A156647 Square array T(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2) with T(n, 0) = n!, read by antidiagonals.
1, 1, 1, 1, -3, 2, 1, -8, 144, 6, 1, -15, 2304, -97200, 24, 1, -24, 14400, -22579200, 914457600, 120, 1, -35, 57600, -857304000, 7517247897600, -119833267276800, 720, 1, -48, 176400, -13548902400, 3163657512960000, -85018329720343756800, 218719679433615360000, 5040
Offset: 0
Examples
Square array begins as: 1, 1, 1, ...; 1, -3, -8, ...; 2, 144, 2304, ...; 6, -97200, -22579200, ...; 24, 914457600, 7517247897600, ...; 120, -119833267276800, -85018329720343756800, ...; Triangle begins as: 1; 1, 1; 1, -3, 2; 1, -8, 144, 6; 1, -15, 2304, -97200, 24; 1, -24, 14400, -22579200, 914457600, 120; 1, -35, 57600, -857304000, 7517247897600, -119833267276800, 720;
Links
- G. C. Greubel, Antidiagonal rows n = 0..25, flattened
Crossrefs
Cf. A123583.
Programs
-
Magma
T:= func< n,k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >; [T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 02 2021
-
Mathematica
T[n_, k_]= If[k==0, n!, Product[1 - ChebyshevT[j, k+1]^2, {j,n}]]; Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jul 02 2021 *)
-
Sage
def T(n,k): return factorial(n) if (k==0) else product( 1 - chebyshev_T(j, k+1)^2 for j in (1..n) ) flatten([[T(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 02 2021
Formula
T(n, k) = Product_{j=1..n} (1 - ChebyshevT(j, k+1)^2) with T(n, 0) = n! (square array).
Extensions
Edited by G. C. Greubel, Jul 02 2021