A156660 Characteristic function of Sophie Germain primes.
0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Wikipedia, Sophie Germain prime
- Index entries for characteristic functions
Programs
-
Haskell
a156660 n = fromEnum $ a010051 n == 1 && a010051 (2 * n + 1) == 1 -- Reinhard Zumkeller, May 01 2012
-
PARI
a(n)=isprime(n)&&isprime(2*n+1) \\ Felix Fröhlich, Aug 11 2014
Formula
a(n) = if n and also 2*n+1 is prime then 1 else 0.
A156874(n) = Sum_{k=1..n} a(k). - Reinhard Zumkeller, Feb 18 2009
For n>1 a(n) = floor((floor(phi(n)/(n-1)) + floor(phi(2*n+1)/(2*n)))/2). - Enrique Pérez Herrero, Apr 28 2012
For n>1 a(n) = floor(phi(2*n^2+n)/(2*n^2-2*n)). - Enrique Pérez Herrero, May 02 2012
Extensions
Definition corrected by Daniel Forgues, Aug 04 2009