A156663 Triangle by columns, powers of 2 interleaved with zeros.
1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 4, 0, 2, 0, 1, 0, 4, 0, 2, 0, 1, 8, 0, 4, 0, 2, 0, 1, 0, 8, 0, 4, 0, 2, 0, 1, 16, 0, 8, 0, 4, 0, 2, 0, 1, 0, 16, 0, 8, 0, 4, 0, 2, 0, 1, 32, 0, 16, 0, 8, 0, 4, 0, 2, 0, 1, 0, 32, 0, 16, 0, 8, 0, 4, 0, 2, 0, 1
Offset: 0
Examples
First few rows of the triangle = 1; 0, 1; 2, 0, 1; 0, 2, 0, 1; 4, 0, 2, 0, 1; 0, 4, 0, 2, 0, 1; 8, 0, 4, 0, 2, 0, 1; 0, 8, 0, 4, 0, 2, 0, 1; 16, 0, 8, 0, 4, 0, 2, 0, 1; 0, 16, 0, 8, 0, 4, 0, 2, 0, 1; 32, 0, 16, 0, 8, 0, 4, 0, 2, 0, 1; 0, 32, 0, 16, 0, 8, 0, 4, 0, 2, 0, 1; ... The inverse array begins 1; 0, 1; -2, 0, 1; 0, -2, 0, 1; 0, 0, -2, 0, 1; 0, 0, 0, -2, 0, 1; 0, 0, 0, 0, -2, 0, 1; 0, 0, 0, 0, 0, -2, 0, 1; 0, 0, 0, 0, 0, 0, -2, 0, 1; ... - _Peter Bala_, Aug 15 2021
Links
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012).
Programs
-
Maple
seq(seq( sqrt(2)^(n-k) * (1 + (-1)^(n-k))/2, k = 0..n), n = 0..10) # Peter Bala, Aug 15 2021
Formula
Triangle by columns, (1, 0, 2, 0, 4, 0, 8, ...) in every column.
From Peter Bala, Aug 15 2021: (Start)
T(n,k) = sqrt(2)^((n - k)/2) * (1 + (-1)^(n-k))/2 for 0 <= k <= n.
Double Riordan array (1/(1 - 2*x^2); x, x) as defined in Davenport et al.
The m-th power of the array is the double Riordan array (1/(1 - 2*x^2)^(m); x, x). Cf. A158944. (End)
Extensions
Typo in Data corrected by Peter Bala, Aug 15 2021
Comments