A156677 a(n) = 81*n^2 - 118*n + 43.
43, 6, 131, 418, 867, 1478, 2251, 3186, 4283, 5542, 6963, 8546, 10291, 12198, 14267, 16498, 18891, 21446, 24163, 27042, 30083, 33286, 36651, 40178, 43867, 47718, 51731, 55906, 60243, 64742, 69403, 74226, 79211, 84358, 89667, 95138, 100771, 106566, 112523, 118642
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[43, 6, 131]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
-
Mathematica
LinearRecurrence[{3,-3,1},{43,6,131},40]
-
PARI
a(n)=81*n^2-118*n+43 \\ Charles R Greathouse IV, Dec 23 2011
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (-43+123*x-242*x^2)/(x-1)^3.
E.g.f.: exp(x)*(43 - 37*x + 81*x^2). - Elmo R. Oliveira, Oct 19 2024
Extensions
Edited by Charles R Greathouse IV, Jul 25 2010
Comments