A156683 Integers that can occur as either leg in more than one primitive Pythagorean triple.
12, 15, 20, 21, 24, 28, 33, 35, 36, 39, 40, 44, 45, 48, 51, 52, 55, 56, 57, 60, 63, 65, 68, 69, 72, 75, 76, 77, 80, 84, 85, 87, 88, 91, 92, 93, 95, 96, 99, 100, 104, 105, 108, 111, 112, 115, 116, 117, 119, 120, 123, 124, 129, 132, 133, 135, 136, 140, 141, 143, 144
Offset: 1
Examples
As 15 is the second integer that can occur as either leg in more than one primitive Pythagorean triangle - (8,15,17) and (15,112,113) - then a(2)=15.
References
- Beiler, Albert H.: Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Ron Knott, Right-angled Triangles and Pythagoras' Theorem
Programs
-
Mathematica
PrimitiveRightTriangleLegs[1]:=0;PrimitiveRightTriangleLegs[n_Integer?Positive]:=Module[{f=Transpose[FactorInteger[n]][[1]]},If[Mod[n,4]==2,0,2^(Length[f]-1)]];Select[Range[150],PrimitiveRightTriangleLegs[ # ]>1 &]
-
PARI
is(n)=n%4!=2 && !isprimepower(n) && n>1 \\ Charles R Greathouse IV, Jun 17 2013
Comments