cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156718 Numbers k such that k^2 == -1 (mod 13^2).

Original entry on oeis.org

70, 99, 239, 268, 408, 437, 577, 606, 746, 775, 915, 944, 1084, 1113, 1253, 1282, 1422, 1451, 1591, 1620, 1760, 1789, 1929, 1958, 2098, 2127, 2267, 2296, 2436, 2465, 2605, 2634, 2774, 2803, 2943, 2972, 3112, 3141, 3281, 3310, 3450, 3479, 3619, 3648, 3788
Offset: 1

Views

Author

Vincenzo Librandi, Feb 14 2009

Keywords

Comments

Also, numbers of the form 169k +- 70.

Crossrefs

Programs

  • Magma
    [Floor(n/2)*169-70*(-1)^n: n in [1..50]];
    
  • Mathematica
    LinearRecurrence[{1,1,-1},{70,99,239},50]
  • PARI
    a(n)=n\2*169-70*(-1)^n \\ Charles R Greathouse IV, Dec 23 2011

Formula

a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(70 + 29*x + 70*x^2) / ( (1+x)*(x-1)^2 ). - Alexander R. Povolotsky, Feb 15 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(29*Pi/338)*Pi/169. - Amiram Eldar, Feb 26 2023