cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054354 First differences of Kolakoski sequence A000002.

Original entry on oeis.org

1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 0, 1, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, 0, -1, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1
Offset: 1

Views

Author

N. J. A. Sloane, May 07 2000

Keywords

Comments

The Kolakoski sequence has only 1's and 2's, and is cubefree. Thus, for all n>=1, a(n) is in {-1, 0, 1}, a(n+1) != a(n), and if a(n) = 0, a(n+1) = -a(n-1), while if a(n) != 0, either a(n+1) = 0 and a(n+2) = -a(n) or a(n+1) = -a(n). A further consequence is that the maximum gap between equal values is 4: for all n, there is an integer k, 1Jean-Christophe Hervé, Oct 05 2014
From Daniel Forgues, Jul 07 2015: (Start)
Second differences: {-1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, ...}
The sequence of first differences bounces between -1 and 1 with a slope whose absolute value is either 1 or 2. We can compress the information in the second differences into {-1, 1, -2, 2, -1, 2, -1, 1, ...} since the -1 and the 1 come in pairs; which can be compressed further into {1, 1, 2, 2, 1, 2, 1, 1, ...} since the signs alternate, where we only need to know that the initial sign is negative. (End)
This appears to divide the positive integers into three sets, each with density approaching 1/3. Note there are no adjacent equal parts (as mentioned above). - Gus Wiseman, Oct 10 2024

Crossrefs

Positions of 0 are A078649.
For Golomb's sequence (A001462) we have A088517.
Positions of -1 are A156242 (descents).
Positions of 1 are A156243 (ascents).
First differences (or second differences of A000002) are A376604.
The Kolakoski sequence (A000002):
- Statistics: A074286, A088568, A156077, A156253.
- Transformations: A054354, A156728, A306323, A332273, A332875, A333229.
Cf. A333254.

Programs

  • Haskell
    a054354 n = a054354_list !! (n-1)
    a054354_list = zipWith (-) (tail a000002_list) a000002_list
    -- Reinhard Zumkeller, Aug 03 2013
  • Mathematica
    a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1 + Mod[n - 1, 2]}], {n, 3, 70}, {a2[[n]]}]; Differences[a2] (* Jean-François Alcover, Jun 18 2013 *)

Formula

Abs(a(n)) = (A000002(n)+A000002(n+1)) mod 2. - Benoit Cloitre, Nov 17 2003

A376604 Second differences of the Kolakoski sequence (A000002). First differences of A054354.

Original entry on oeis.org

-1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 1, 1, -1, -1, 2, -2, 1, 1, -2, 2, -1, -1, 1, 1, -2, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 2, -1, -1, 2, -2, 1, 1, -2, 1, 1, -1, -1, 2, -1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 1, 1, -2, 2, -1, -1
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2024

Keywords

Comments

Since A000002 has no runs of length 3, this sequence contains no zeros.
The densities appear to approach (1/3, 1/3, 1/6, 1/6).

Examples

			The Kolakoski sequence (A000002) is:
  1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, ...
with first differences (A054354):
  1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, ...
with first differences (A376604):
  -1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 1, 1, -1, -1, 2, -2, 1, 1, -2, ...
		

Crossrefs

A001462 is Golomb's sequence.
A078649 appears to be zeros of the first and third differences.
A288605 gives positions of first appearances of each balance.
A306323 gives a 'broken' version.
A333254 lists run-lengths of differences between consecutive primes.
For the Kolakoski sequence (A000002):
- Restrictions: A074264, A100428, A100429, A156263, A156264.
- Transformations: A054354, A156728, A332273, A332875, A333229, A376604.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,2},1,{1,2,1},2,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_]:=Nest[kolagrow,{1},n-1];
    Differences[kol[100],2]

A216345 Position of the beginning of the n-th run in A000002.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 10, 11, 13, 15, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 31, 33, 34, 35, 37, 38, 40, 42, 43, 44, 46, 47, 48, 50, 51, 53, 55, 56, 58, 60, 61, 62, 64, 65, 67, 69, 70, 72, 73, 74, 76, 77, 78, 80, 82, 83, 85, 87, 88, 89, 91, 92, 94, 96, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Jon Perry, Sep 04 2012

Keywords

Comments

If n is odd then the run is 1's, otherwise it's 2's.

Examples

			Kolakoski sequence starts 1221121 so we can see that this sequence begins 1,2,4,6,7.
		

Crossrefs

Programs

  • Haskell
    a216345 n = a216345_list !! (n-1)
    a216345_list = 1 : (filter (\x -> a000002 x /= a000002 (x - 1)) [2..])
    -- Reinhard Zumkeller, Aug 03 2013
  • JavaScript
    a=new Array();
    a[1]=1;  a[2]=2;  a[3]=2;
    cd=1;  ap=3;
    for (i=4; i<50; i++)
    {
        if (a[ap]==1) a[i]=cd;
        else {a[i]=cd; a[i+1]=cd; i++}
        ap++;
        cd=3-cd;
    }
    /* document.write(a); document.write("
    "); */ b=new Array(); b[1]=1; c=2; for (i=2; i<50; i++) if (a[i]!=a[i-1]) b[c++]=i; document.write(b);

Formula

{n: A156728(n-1)=1}. - R. J. Mathar, Sep 14 2012
a(n+1) = A054353(n)+1 = a(n) + A000002(n). - Jean-Christophe Hervé, Oct 05 2014

A156351 a(n) = Sum_{k=1..n} (-1)^K(k+1)*(K(k+1)-K(k)) where K(k) = A000002(k).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 41, 41, 42, 43, 43, 44, 44, 45, 46, 46, 47, 48, 49, 49
Offset: 1

Views

Author

Benoit Cloitre, Feb 08 2009

Keywords

Comments

a(n)=1 plus the number of symbol changes in the first n terms of A078880. - Jean-Marc Fedou and Gabriele Fici, Mar 18 2010

Crossrefs

Partial sums of A156728.

Programs

  • Mathematica
    a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1 + Mod[n - 1, 2]}], {n, 3, 80}, {i, 1, a2[[n]]}]; a[n_] := Sum[(-1)^a2[[k + 1]]*(a2[[k + 1]] - a2[[k]]), {k, 1, n}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 18 2013 *)

Formula

n - A054353(a(n)) = 1 if n is in A078649, n - A054353(a(n)) = 0 otherwise. A078649(n + 1 - a(n)) - n takes values among {0,1,2,3}.
a(n) = gcd(a(a(n-1)),2) + a(n-2) (conjectured). - Jon Maiga, Dec 07 2021

A157687 a(n) = n - A054353(A156351(n)).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Benoit Cloitre, Mar 04 2009

Keywords

Crossrefs

Formula

a(n) = 1 iff n is in A078649, a(n) = 0 iff n is in A054353.
a(n) = n-A054353(A157684(n)+A157685(n)).
a(n) = 1 - A156728(n). - Alan Michael Gómez Calderón, Dec 19 2024

A333229 First sums of the Kolakoski sequence A000002.

Original entry on oeis.org

3, 4, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 2, 3, 3, 2, 3, 4, 3, 3, 3, 2, 3, 3, 3, 4, 3, 2, 3, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 2, 3, 3, 3, 4, 3, 3, 3, 2, 3, 3, 2, 3, 4, 3, 3, 4, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 2, 3, 3, 2, 3, 3, 3, 4, 3, 3, 3, 2, 3, 4, 3, 3, 4, 3, 2, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Crossrefs

Positions of 3's are A054353.
Positions of 2's are A074262.
Positions of 4's are A074263.
The number of runs in the first n terms of A000002 is A156253(n).
Even-indexed terms are A332273 (without the first term).
Odd-indexed terms are A332875.

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=Nest[kolagrow,{1},n-1];
    Table[kol[n][[-1]]+kol[n+1][[-1]],{n,30}]

Formula

a(n) = A000002(n) + A000002(n + 1).
Showing 1-6 of 6 results.