cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156732 Triangle T(n, k) = ((n-2*k)^2/(n-k+1))*binomial(n+1, k+1), read by rows.

Original entry on oeis.org

0, 1, 1, 4, 0, 4, 9, 2, 2, 9, 16, 10, 0, 10, 16, 25, 27, 5, 5, 27, 25, 36, 56, 28, 0, 28, 56, 36, 49, 100, 84, 14, 14, 84, 100, 49, 64, 162, 192, 84, 0, 84, 192, 162, 64, 81, 245, 375, 270, 42, 42, 270, 375, 245, 81
Offset: 0

Views

Author

Roger L. Bagula, Feb 14 2009

Keywords

Comments

The general formula for integrals of the form int (x^(2*k))/((arcsin(x))^2) dx involves the triangular sequence t(2*k, n). For example, the solution to the integral Integral x^6/((arcsin(x))^2) dx involves the following sequence: -5*Si(arcsin(x)) + 27*Si(3*arcsin(x)) - 25*Si(5*arcsin(x)), where Si represents the sine integral. The sequence of integers 5, 27, 25 corresponds to the sixth row of this triangular sequence. The general formula for the integral Integral x^(2*k)/((arcsin(x))^2) dx is: (1/(2^(2*k)))*( -((2^(2*k)*sqrt(1-x^2)*(x^(2*k)))/arcsin(x) )+ (-1)^(k+1)*(1+(2*k))*Si((1+2*k)*arcsin(x)) + Sum_{n=1..k} (-1)^n*((1-2*n)^2/(k-n+1))*binomial(2*k, k+n)*Si((2*n-1)*arcsin(x)) ). - John M. Campbell, Sep 22 2010

Examples

			Triangle begins as:
   0;
   1,   1;
   4,   0,   4;
   9,   2,   2,   9;
  16,  10,   0,  10, 16;
  25,  27,   5,   5, 27, 25;
  36,  56,  28,   0, 28, 56,  36;
  49, 100,  84,  14, 14, 84, 100,  49;
  64, 162, 192,  84,  0, 84, 192, 162,  64;
  81, 245, 375, 270, 42, 42, 270, 375, 245, 81;
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968.

Crossrefs

Programs

  • Magma
    A156732:= func< n,k | ((n-2*k)^2/(n+2))*Binomial(n+2, k+1) >;
    [A156732(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 28 2021
  • Mathematica
    T[n_, k_]:= ((n-2*k)^2/(n-k+1))*Binomial[n+1, k+1];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 28 2021 *)
  • Sage
    def A156732(n, k): return ((n-2*k)^2/(n+2))*binomial(n+2, k+1)
    flatten([[A156732(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2021
    

Formula

T(n, k) = ((n-2*k)^2/(n-k+1))*binomial(n+1, k+1).
Sum_{k=0..floor(n/2)} T(n-1, k-1) = 2^n.
From G. C. Greubel, Feb 28 2021: (Start)
T(n, k) = T(n, n-k).
T(n, k) = ((n-2*k)^2/(n+2))*binomial(n+2, k+1).
Sum_{k=0..n} T(n, k) = 2*(2^(n+1) -n-2) = 4*A002662(n) + 2*n^2. (End)

Extensions

Edited by G. C. Greubel, Feb 28 2021