A156732 Triangle T(n, k) = ((n-2*k)^2/(n-k+1))*binomial(n+1, k+1), read by rows.
0, 1, 1, 4, 0, 4, 9, 2, 2, 9, 16, 10, 0, 10, 16, 25, 27, 5, 5, 27, 25, 36, 56, 28, 0, 28, 56, 36, 49, 100, 84, 14, 14, 84, 100, 49, 64, 162, 192, 84, 0, 84, 192, 162, 64, 81, 245, 375, 270, 42, 42, 270, 375, 245, 81
Offset: 0
Examples
Triangle begins as: 0; 1, 1; 4, 0, 4; 9, 2, 2, 9; 16, 10, 0, 10, 16; 25, 27, 5, 5, 27, 25; 36, 56, 28, 0, 28, 56, 36; 49, 100, 84, 14, 14, 84, 100, 49; 64, 162, 192, 84, 0, 84, 192, 162, 64; 81, 245, 375, 270, 42, 42, 270, 375, 245, 81;
References
- J. Riordan, Combinatorial Identities, Wiley, 1968.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- John. M. Campbell, Double Series Involving Binomial Coefficients and the Sine Integral, arXiv:1009.0236 [math.NT], 2010, p. 3-4. [From _John M. Campbell_, Sep 22 2010]
Programs
-
Magma
A156732:= func< n,k | ((n-2*k)^2/(n+2))*Binomial(n+2, k+1) >; [A156732(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 28 2021
-
Mathematica
T[n_, k_]:= ((n-2*k)^2/(n-k+1))*Binomial[n+1, k+1]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 28 2021 *)
-
Sage
def A156732(n, k): return ((n-2*k)^2/(n+2))*binomial(n+2, k+1) flatten([[A156732(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2021
Formula
T(n, k) = ((n-2*k)^2/(n-k+1))*binomial(n+1, k+1).
Sum_{k=0..floor(n/2)} T(n-1, k-1) = 2^n.
From G. C. Greubel, Feb 28 2021: (Start)
T(n, k) = T(n, n-k).
T(n, k) = ((n-2*k)^2/(n+2))*binomial(n+2, k+1).
Sum_{k=0..n} T(n, k) = 2*(2^(n+1) -n-2) = 4*A002662(n) + 2*n^2. (End)
Extensions
Edited by G. C. Greubel, Feb 28 2021
Comments