A156739 Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 6, read by rows.
1, 1, 1, 1, 120, 1, 1, 3060, 3060, 1, 1, 38760, 988380, 38760, 1, 1, 319770, 103285710, 103285710, 319770, 1, 1, 1961256, 5226256926, 66199254396, 5226256926, 1961256, 1, 1, 9657700, 157843517260, 16494647553670, 16494647553670, 157843517260, 9657700, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 120, 1; 1, 3060, 3060, 1; 1, 38760, 988380, 38760, 1; 1, 319770, 103285710, 103285710, 319770, 1; 1, 1961256, 5226256926, 66199254396, 5226256926, 1961256, 1;
Links
- G. C. Greubel, Rows n = 0..30 of the triangle, flattened
Programs
-
Magma
A156739:= func< n,k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..6]]) ) >; [A156739(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 18 2021
-
Mathematica
b[n_, k_]:= Binomial[2*n, 2*k]; T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j,0,m}]]; Table[T[n, k, 6], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 18 2021 *)
-
Sage
def A156739(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..6)) ) flatten([[A156739(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2021
Formula
T(n, k, m) = round( Product_{j=0..m} b(n+j, k+j)/b(n-k+j, j) ), where b(n, k) = binomial(2*n, 2*k) and m = 6.
Extensions
Definition corrected to give integral terms and edited by G. C. Greubel, Jun 18 2021