A156759 a(1)=2, a(n+1) is the smallest composite number > a(n) with smallest prime factor >= smallest prime factor of a(n).
2, 4, 6, 8, 9, 15, 21, 25, 35, 49, 77, 91, 119, 121, 143, 169, 221, 247, 289, 323, 361, 437, 529, 667, 713, 841, 899, 961, 1147, 1271, 1333, 1369, 1517, 1591, 1681, 1763, 1849, 2021, 2209, 2491, 2773, 2809, 3127, 3233, 3481, 3599, 3721, 4087, 4331, 4453, 4489
Offset: 1
Keywords
Examples
a(1)=2; a(2)=4=2*2 (2=2) where 2=2; a(3)=6=3*2 (3>2) where 2=2; a(4)=8=2*2*2 (2=2=2) where 2=2; a(5)=9=3*3 (3=3) where 3>2; a(6)=15=5*3 (5>3) where 3=3; a(7)=21=7*3 (7>3) where 3=3; a(8)=25=5*5 (5>3) where 5>3, etc.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Vladimir Shevelev, A classification of the positive integers over primes
Programs
-
Maple
A020639 := proc(n) min(op(numtheory[factorset](n))) ; end: A156759 := proc(n) option remember ; local a; if n = 1 then 2; else for a from procname(n-1)+1 do if not isprime(a) then if A020639(a) >= A020639(procname(n-1)) then RETURN(a) ; fi; fi; od: fi; end: seq(A156759(n),n=1..100) ; # R. J. Mathar, Feb 20 2009
-
Mathematica
lpf[n_] := FactorInteger[n][[1, 1]]; a[1] = 2; a[n_] := a[n] = Module[{k = a[n - 1] + 1, p = lpf[a[n - 1]]}, While[PrimeQ[k] || lpf[k] < p, k++]; k]; Array[a, 100] (* Amiram Eldar, Sep 19 2019 *) nxt[n_]:=Module[{k=n+1,spf},spf=FactorInteger[n][[1,1]];While[PrimeQ[k] || FactorInteger[k][[1,1]]
Harvey P. Dale, Apr 23 2020 *)
Formula
For n>1, lpf(a(n)) = prime(pi(sqrt(a(n)))), where pi(n) = A000720(n). - Vladimir Shevelev, Sep 17 2014
Extensions
Corrected by R. J. Mathar, Feb 20 2009
Comments