cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156789 Irregular triangle, read by rows, T(n, k) = binomial(2*n, k)*binomial(2*k, k).

Original entry on oeis.org

1, 1, 4, 6, 1, 8, 36, 80, 70, 1, 12, 90, 400, 1050, 1512, 924, 1, 16, 168, 1120, 4900, 14112, 25872, 27456, 12870, 1, 20, 270, 2400, 14700, 63504, 194040, 411840, 579150, 486200, 184756, 1, 24, 396, 4400, 34650, 199584, 853776, 2718144, 6370650, 10696400, 12193896, 8465184, 2704156
Offset: 0

Views

Author

Roger L. Bagula, Feb 15 2009

Keywords

Comments

Row sums are A137341: {1, 11, 195, 3989, 86515, 1936881, 44241261, 1024642875, 23973456915, 565280386625, 13411044301945, ...}.

Examples

			Triangle begins as:
  1;
  1,  4,   6;
  1,  8,  36,   80,    70;
  1, 12,  90,  400,  1050,  1512,    924;
  1, 16, 168, 1120,  4900, 14112,  25872,  27456,  12870;
  1, 20, 270, 2400, 14700, 63504, 194040, 411840, 579150, 486200, 184756;
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p.77.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..2*n], k->Binomial(2*n, k)*Binomial(2*k, k) ))); # G. C. Greubel, Nov 30 2019
  • Magma
    [Binomial(2*n, k)*Binomial(2*k, k): k in [0..2*n], n in [0..10]]; // G. C. Greubel, Nov 30 2019
    
  • Maple
    seq(seq( binomial(2*n, k)*binomial(2*k, k), k=0..2*n), n=0..10); # G. C. Greubel, Nov 30 2019
  • Mathematica
    Table[Binomial[2*n, k]*Binomial[2*k, k], {n,0,10}, {k,0,2*n}]//Flatten
  • PARI
    T(n,k) = binomial(2*n, k)*binomial(2*k, k); \\ G. C. Greubel, Nov 30 2019
    
  • Sage
    [[binomial(2*n, k)*binomial(2*k, k) for k in (0..2*n)] for n in (0..10)] # G. C. Greubel, Nov 30 2019
    

Formula

T(n, k) = binomial(2*n, k)*binomial(2*k, k).