A156790 Number of first quadrant lattice squares inside the circle x^2+y^2=(2^n)^2.
0, 1, 8, 41, 183, 770, 3149, 12730, 51209, 205356, 822500, 3292134, 13172634, 52698912, 210812207, 843281848, 3373193506, 13492906143, 53971888157, 215888078393, 863553363881, 3454215553470, 13816866413106, 55267474046659
Offset: 0
Keywords
Examples
Let + represent a square inside the circle and x a square traversed by the circle. xx +x a(1)=1 xxx ++xx +++x +++x a(2)=8
Links
- Wikipedia, Gauss circle problem [From _Jaume Oliver Lafont_, Apr 20 2010]
Crossrefs
Cf. A057655.
Cf. A177144. [From Jaume Oliver Lafont, May 03 2010]
Programs
-
PARI
a(n)=sum(m=1,2^n-1,floor(sqrt(4^n-m^2)))
Extensions
a(19) corrected by Sophia Keith, Sep 15 2024
Comments