A156816 Decimal expansion of the positive root of the equation 13x^4 - 7x^2 - 581 = 0.
2, 6, 3, 8, 1, 5, 8, 5, 3, 0, 3, 4, 1, 7, 4, 0, 8, 6, 8, 4, 3, 0, 3, 0, 7, 5, 6, 6, 7, 4, 4, 4, 1, 3, 0, 4, 8, 8, 8, 0, 5, 0, 2, 2, 0, 1, 0, 3, 1, 8, 3, 5, 9, 7, 3, 7, 0, 7, 8, 7, 0, 6, 0, 7, 7, 6, 9, 6, 3, 2, 1, 9, 7, 0, 7, 3, 5, 5, 9, 5, 9, 8, 8, 9, 3, 2, 0, 0, 5, 1, 8, 9, 0, 0, 0, 9, 8, 3, 3, 5, 2, 4, 2, 1, 2
Offset: 1
Examples
x = 2.63815853034174086843...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.10, p. 331.
- N. Madras and G. Slade, The Self-Avoiding Walk (Boston, Birkhauser), 1993.
Links
- Roland Bauerschmidt, Hugo Duminil-Copin, Jesse Goodman, and Gordon Slade, Lectures on Self-Avoiding Walks, arXiv:1206.2092 [math.PR], 2012.
- M. Bousquet-Mélou, A. J. Guttmann and I. Jensen, Self-avoiding walks crossing a square, arXiv:cond-mat/0506341, 2005.
- Pierre-Louis Giscard, Que sait-on compter sur un graphe. Partie 3 (in French), Images des Mathématiques, CNRS, 2020.
- Jesper Lykke Jacobsen, Christian R. Scullard, and Anthony J. Guttmann, On the growth constant for square-lattice self-avoiding walks, J. Phys. A: Math. Theor., 49 (2016), 494004; arXiv:1607.02984 [cond-mat.stat-mech], 2016.
- Index entries for algebraic numbers, degree 4.
Programs
-
Mathematica
RealDigits[Sqrt[1/26*(7+Sqrt[30261])],10,120][[1]] (* Harvey P. Dale, Nov 22 2014 *)
-
PARI
polrootsreal(13*x^4-7*x^2-581)[2] \\ Charles R Greathouse IV, Apr 16 2014
Formula
x = sqrt(7/26 + sqrt(30261)/26).
Comments