A156914 Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.
1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
Offset: 0
Examples
Square array begins as: 1, 1, 1, 1, ...; 2, 3, 4, 5, ...; 6, 35, 130, 357, ...; 20, 1395, 33880, 376805, ...; 70, 200787, 75913222, 6221613541, ...; 252, 109221651, 1506472167928, 1634141006295525, ...; Antidiagonal triangle begins as: 1; 1, 2; 1, 3, 6; 1, 4, 35, 20; 1, 5, 130, 1395, 70; 1, 6, 357, 33880, 200787, 252; 1, 7, 806, 376805, 75913222, 109221651, 924; 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
Links
- G. C. Greubel, Antidiagonal rows n = 0..25, flattened
Programs
-
Magma
QBinomial:= func< n,k,q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >; T:= func< n,k | QBinomial(2*n, n, k+1) >; [T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
-
Mathematica
T[n_, k_]:= QBinomial[2*n, n, k+1]; Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
-
Sage
def A156914(n, k): return q_binomial(2*n, n, k+1) flatten([[A156914(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021
Formula
T(n, k) = q-binomial(2*n, n, k+1), where q-binomial(n, k, q) = Product_{j=0..k-1} ( (1-q^(n-j))/(1-q^(j+1)) ), read by antidiagonals. - G. C. Greubel, Jun 14 2021
Extensions
Edited by G. C. Greubel, Jun 14 2021