cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156914 Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
Offset: 0

Views

Author

Roger L. Bagula, Feb 18 2009

Keywords

Examples

			Square array begins as:
    1,         1,             1,                1, ...;
    2,         3,             4,                5, ...;
    6,        35,           130,              357, ...;
   20,      1395,         33880,           376805, ...;
   70,    200787,      75913222,       6221613541, ...;
  252, 109221651, 1506472167928, 1634141006295525, ...;
Antidiagonal triangle begins as:
  1;
  1, 2;
  1, 3,    6;
  1, 4,   35,      20;
  1, 5,  130,    1395,         70;
  1, 6,  357,   33880,     200787,           252;
  1, 7,  806,  376805,   75913222,     109221651,          924;
  1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
		

Crossrefs

Programs

  • Magma
    QBinomial:= func< n,k,q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >;
    T:= func< n,k | QBinomial(2*n, n, k+1) >;
    [T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
    
  • Mathematica
    T[n_, k_]:= QBinomial[2*n, n, k+1];
    Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
  • Sage
    def A156914(n, k): return q_binomial(2*n, n, k+1)
    flatten([[A156914(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021

Formula

T(n, k) = q-binomial(2*n, n, k+1), where q-binomial(n, k, q) = Product_{j=0..k-1} ( (1-q^(n-j))/(1-q^(j+1)) ), read by antidiagonals. - G. C. Greubel, Jun 14 2021

Extensions

Edited by G. C. Greubel, Jun 14 2021