A156921 FP1 polynomials related to the generating functions of the right hand columns of the A156920 triangle.
1, 1, 1, 1, -6, 1, 7, -79, 119, 126, -270, 1, 28, -515, 1654, 8689, -65864, 142371, -82242, -99090, 113400, 1, 86, -2255, 5784, 300930, -3904584, 20663714, -41517272, -80232259, 657717054
Offset: 0
Examples
The first few rows of the "triangle" of the coefficients of the FP1 polynomials. In the columns the coefficients of the powers of z^m, m=0,1,2,... , appear. [1] [1] [1, 1, -6] [1, 7, -79, 119, 126, -270] [1, 28, -515, 1654, 8689, -65864, 142371, -82242, -99090, 113400] Matrix of the coefficients of the FP1 polynomials. The coefficients in the columns of this matrix are the powers of z^m, m=0,1,2,.. . [1, 0 ,0, 0, 0, 0, 0, 0, 0, 0] [1, 0 ,0, 0, 0, 0, 0, 0, 0, 0] [1, 1, -6, 0 ,0, 0, 0, 0, 0, 0] [1, 7, -79, 119, 126, -270, 0, 0, 0, 0] [1, 28, -515, 1654, 8689, -65864, 142371, -82242, -99090, 113400] The first few FP1 polynomials are: FP1(z; RHCnr=1) = 1 FP1(z; RHCnr=2) = 1 FP1(z; RHCnr =3) = 1+z-6*z^2 Some GF1(z;RHCnr) are: GF1(z;RHCnr= 3) = (1+z-6*z^2)/((1-5*z)*(1-3*z)^2*(1-z)^3) GF1(z;RHCnr= 4) = (1+7*z-79*z^2+119*z^3+126*z^4-270*z^5)/((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4)
Crossrefs
Programs
-
Maple
RHCnr:=4: if RHCnr=1 then RHCmax :=1; else RHCmax:=(RHCnr-1)*(RHCnr)/2 end if: RHCend:=RHCnr+RHCmax: for k from RHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!) *x^p/(1-4*x)^(p+1),p=0..k)/(((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); RHC[k-RHCnr+1]:= coeff(fx,x,k-RHCnr)/2^(k-RHCnr) end do: a:=n-> RHC[n]: seq(a(n), n=1..RHCend-RHCnr+1); for nx from 0 to RHCmax do num:=sort(sum(A[t]*z^t, t=0..RHCmax)); nom:=Product((1-(2*u-1)*z)^(RHCnr-u+1),u=1..RHCnr): RHCa:= series(num/nom,z,nx+1); y:=coeff(RHCa,z,nx)-A[nx]; x:=RHC[nx+1]; A[nx]:=x-y; end do: FP1[RHCnr]:=sort(num,z, ascending); GenFun[RHCnr] :=FP1[RHCnr]/product((1-(2*m-1)*z)^(RHCnr-m+1),m=1..RHCnr);
Formula
G.f.: GF1(z;RHCnr) := FP1(z;RHCnr)/product((1-(2*m-1)*z)^(RHCnr+1-m),m=1..RHCnr)
Row sums (n) = (-1)^(1+(n+1)*(n+2)/2)*A098695(n).
Comments