A156925 FP2 polynomials related to the generating functions of the left hand columns of the A156920 triangle.
1, 1, 1, 1, 8, -11, -6, 1, 38, -108, -242, 839, -444, -180, 1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240, 1, 487, 720, -130472, 1277794, -4193514, -6504496
Offset: 0
Examples
The first few rows of the "triangle" of the coefficients of the FP2 polynomials. In the columns the coefficients of the powers of z^m, m=0,1,2,..., appear. [1] [1, 1] [1, 8, -11, -6] [1, 38, -108, -242, 839, -444, -180] [1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240] Matrix of the coefficients of the FP2 polynomials. The coefficients in the columns of this matrix are the powers of z^m, m=0,1,2,... [1, 0, 0, 0, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0] [1, 8 , -11, -6, 0, 0, 0] [1, 38, -108, -242, 839, -444, -180] The first few FP2 polynomials are: FP2(z; LHCnr = 1) = 1 FP2(z; LHCnr = 2) = (1+z) FP2(z; LHCnr = 3) = 1+8*z-11*z^2-6*z^3 Some GF2(z;LHCnr) are: GF2(z; LHCnr = 3) = (1+8*z-11*z^2-6*z^3)/((1-z)^3*(1-2*z)^2*(1-3*z)) GF2(z; LHCnr = 4) = (1+38*z-108*z^2-242*z^3+839*z^4-444*z^5-180*z^6)/((1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z))
Crossrefs
Programs
-
Maple
LHCnr:=5; LHCmax:=(LHCnr)*(LHCnr-1)/2: RHCend:=LHCnr+LHCmax: for k from LHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1),p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx,x,n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..RHCend); for nx from 0 to LHCmax do num:=sort(sum(A[t]*z^t,t=0..LHCmax)): nom:=product((1-u*z)^(LHCnr-u+1),u=1..LHCnr); LHCb:=series(num/nom,z,nx+1); y:=coeff(LHCb,z,nx)-A[nx]; x:=LHC[LHCnr+nx]; A[nx]:=x-y; end do: FP2[LHCnr]:=sort(num,z, ascending); GenFun[LHCnr]:= FP2[LHCnr]/ product((1-m*z)^(LHCnr-m+1), m=1..LHCnr);
Formula
G.f.: GF2(z; LHCnr) = FP2(z; LHCnr)/Product_{m=1..LHCnr} (1-m*z)^(LHCnr-m+1).
Row sum(n+1) = (-1)^(n)*2*(n+1)!*Row sum(n); Row sum(n=0) = 1.
Comments