A156928 G.f. of the z^1 coefficients of the FP1 in the second column of the A156921 matrix.
1, 7, 28, 86, 227, 545, 1230, 2664, 5613, 11611, 23728, 48106, 97031, 195077, 391394, 784284, 1570353, 3142815, 6288100, 12579070, 25161451, 50326697, 100657718, 201320336, 402646197, 805298595
Offset: 2
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).
Programs
-
GAP
List([2..40], n-> (9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6); # G. C. Greubel, Jul 08 2019
-
Magma
[(9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6: n in [2..40]]; // G. C. Greubel, Jul 08 2019
-
Mathematica
Table[(9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6, {n, 2, 40}] (* Michael De Vlieger, Sep 23 2017 *)
-
PARI
vector(40, n, n++; (9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6) \\ G. C. Greubel, Jul 08 2019
-
Sage
[(9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6 for n in (2..40)] # G. C. Greubel, Jul 08 2019
Formula
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) + 2.
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
a(n) = (9*2^(n+2) - (2*n^3 + 9*n^2 + 25*n + 36))/6.
G.f.: GF3(z;m=1) = z^2*(1+z)/((1-z)^4*(1-2*z)).
a(n) = Sum_{k=1..n+1} Sum_{i=1..n+1} (k-1)^2 * C(n-k+1,i). - Wesley Ivan Hurt, Sep 22 2017
E.g.f.: (36*exp(2*x) - (36 + 36*x + 15*x^2 + 2*x^3)*exp(x))/6. - G. C. Greubel, Jul 08 2019
Comments