cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156928 G.f. of the z^1 coefficients of the FP1 in the second column of the A156921 matrix.

Original entry on oeis.org

1, 7, 28, 86, 227, 545, 1230, 2664, 5613, 11611, 23728, 48106, 97031, 195077, 391394, 784284, 1570353, 3142815, 6288100, 12579070, 25161451, 50326697, 100657718, 201320336, 402646197, 805298595
Offset: 2

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

Antidiagonal sums of the convolution array A213582. - Clark Kimberling, Jun 19 2012

Crossrefs

Cf. A156927.
Equals second column of A156921.
Other columns A156929, A156930, A156931.

Programs

  • GAP
    List([2..40], n-> (9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6); # G. C. Greubel, Jul 08 2019
  • Magma
    [(9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6: n in [2..40]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    Table[(9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6, {n, 2, 40}] (* Michael De Vlieger, Sep 23 2017 *)
  • PARI
    vector(40, n, n++; (9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    [(9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6 for n in (2..40)] # G. C. Greubel, Jul 08 2019
    

Formula

a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) + 2.
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
a(n) = (9*2^(n+2) - (2*n^3 + 9*n^2 + 25*n + 36))/6.
G.f.: GF3(z;m=1) = z^2*(1+z)/((1-z)^4*(1-2*z)).
a(n) = Sum_{k=1..n+1} Sum_{i=1..n+1} (k-1)^2 * C(n-k+1,i). - Wesley Ivan Hurt, Sep 22 2017
E.g.f.: (36*exp(2*x) - (36 + 36*x + 15*x^2 + 2*x^3)*exp(x))/6. - G. C. Greubel, Jul 08 2019