cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A243429 Primes of the form 2^n + 39.

Original entry on oeis.org

41, 43, 47, 71, 103, 167, 1063, 2087, 8231, 131111, 536870951, 8589934631, 549755813927, 8796093022247, 154742504910672534362390567, 40564819207303340847894502572071, 162259276829213363391578010288167, 2722258935367507707706996859454145691687
Offset: 1

Views

Author

Vincenzo Librandi, Jun 05 2014

Keywords

Comments

Associated n: 1, 2, 3, 5, 6, 7, 10, 11, 13, 17, 29, 33, 39, 43, 87, 105, 107, 131, 253, 329, ....

Crossrefs

Cf. primes of the form 2^n+k: A092506 (k=1), A057733 (k=3), A123250 (k=5), A104066 (k=7), A104070 (k=9), A156940 (k=11), A104067 (k=13), A144487 (k=15), A156973 (k=17), A104068 (k=19), A156983 (k=21), A176922 (k=23), A104072 (k=25), A104071 (k=27), A156974 (k=29), A104069 (k=31), A176926 (k=33), A176927 (k=35), A176924 (k=37), this sequence (k=39), A176925 (k=41), A243430 (k=43), A243431 (k=45), A243432 (k=47), A104073 (k=49).

Programs

  • Magma
    [a: n in [0..500] | IsPrime(a) where a is 2^n+39];
  • Mathematica
    Select[Table[2^n + 39, {n, 0, 500}], PrimeQ]

A156973 Primes of the form 2^k + 17.

Original entry on oeis.org

19, 8209, 2097169, 8589934609, 2417851639229258349412369, 680564733841876926926749214863536422929, 62165404551223330269422781018352605012557018849668464680057997111644937126566671941649
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 19 2009

Keywords

Examples

			19 = 2^1 + 17 is in the sequence;
8209 = 2^13 + 17 is in the sequence.
		

Crossrefs

Cf. A000040, A057200, A057733 (2^k + 3), A123250 (2^k + 5), A104066 (2^k + 7), A156940 (2^k + 11), A104067 (2^k + 13).

Programs

  • Magma
    [ a: n in [1..400] | IsPrime(a) where a is 2^n+17 ]; // Vincenzo Librandi, Nov 27 2010
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 17], 2^n + 17, 0], {n, 1, 300}]],1]

Formula

a(n) = 2^A057200(n) + 17. - Elmo R. Oliveira, Nov 08 2023

Extensions

a(7) from Vincenzo Librandi, Apr 29 2010

A156974 Primes of the form 2^k + 29.

Original entry on oeis.org

31, 37, 61, 157, 541, 8221, 32797, 131101, 8388637, 134217757, 8589934621, 137438953501, 8796093022237, 9223372036854775837, 590295810358705651741, 9444732965739290427421, 604462909807314587353117, 618970019642690137449562141, 166153499473114484112975882535043101, 170141183460469231731687303715884105757, 883423532389192164791648750371459257913741948437809479060803100646309917
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 19 2009

Keywords

Crossrefs

Cf. A057733 (2^k+3), A123250 (2^k+5), A104066 (2^k+7), A156940 (2^k+11).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is 2^n+29 ]; // Vincenzo Librandi, Nov 27 2010
  • Maple
    a := proc (n) if isprime(2^n+29) = true then 2^n+29 else end if end proc: seq(a(n), n = 1 .. 110); # Emeric Deutsch, Mar 14 2009
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 29], 2^n + 29, 0], {n, 1, 500}]],1]

Formula

a(n) = 2^A156982(n) + 29. - Elmo R. Oliveira, Nov 08 2023

Extensions

More terms from Emeric Deutsch, Mar 14 2009
More terms from Vincenzo Librandi, Nov 27 2010

A172183 a(n) is the smallest prime of the form p^q+n, where p and q are prime, or zero if no such prime exists.

Original entry on oeis.org

5, 11, 7, 13, 13, 31, 11, 17, 13, 19, 19, 37, 17, 23, 19, 41, 8209, 43, 23, 29, 29, 31, 31, 73, 29, 53, 31, 37, 37, 79, 0, 41, 37, 43, 43, 61, 41, 47, 43, 67, 73, 67, 47, 53, 53, 71, 79, 73, 53, 59, 59, 61, 61, 79, 59, 83, 61, 67, 67, 109, 0, 71, 67, 73, 73, 191, 71, 193, 73, 79
Offset: 1

Views

Author

Cheng Zhang (cz1(AT)rice.edu), Jan 28 2010, Mar 02 2010

Keywords

Comments

If n mod 6 = 1, both p and q must be 2, and a(n)=0 if n + 4 is not a prime. The values of a(n) for n=257,297,353,383,557 are either greater than 176 000 or 0. Several large entries: a(87) = 2^25633 + 87, a(717) = 2^3217 + 717, a(773) = 2^2539 + 773, a(927) = 2^1117 + 927.

Examples

			a(1)=5 because 5=2^2+1 is the smallest prime of the form p^q+1. a(2)=11 because 11=3^2+2. a(3)=7, because 7=2^2+3. a(17)=8209, because 8209=2^13+17. a(31)=0, because p^q+31 cannot be a prime.
		

Crossrefs

Programs

  • Mathematica
    For[l = {}; n = 1, n <= 70, n++, found = False; If[Mod[n, 2] == 0, For[rm = Infinity; i = 1, i < 100, i++, For[j = 1, j < 100, j++, p = Prime[i]; q = Prime[j]; r = p^q + n; If[r >= rm, Break[], If[PrimeQ[r], rm = r; found = True]]; ]; ], (* if n is odd, r=2^q+n *) If[Mod[n, 6] == 1, r = 4 + n; If[PrimeQ[r], found = True], For[j = 1, j < 1000, j++, q = Prime[j]; r = 2^q + n; If[PrimeQ[r], found = True; rm = r; Break[]]; ]; ]; ]; If[ ! found, rm = 0]; l = Append[l, rm]; ]; l

A267615 a(n) = 2^n + 11.

Original entry on oeis.org

12, 13, 15, 19, 27, 43, 75, 139, 267, 523, 1035, 2059, 4107, 8203, 16395, 32779, 65547, 131083, 262155, 524299, 1048587, 2097163, 4194315, 8388619, 16777227, 33554443, 67108875, 134217739, 268435467, 536870923, 1073741835, 2147483659, 4294967307, 8589934603, 17179869195, 34359738379
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 18 2016

Keywords

Comments

Recurrence relation b(n) = 3*b(n - 1) - 2*b(n - 2) for n>1, b(0) = k, b(1) = k + 1, gives the closed form b(n) = 2^n + k - 1.

Crossrefs

Cf. sequences with closed form 2^n + k - 1: A168616 (k=-4), A028399 (k=-3), A036563 (k=-2), A000918 (k=-1), A000225 (k=0), A000079 (k=1), A000051 (k=2), A052548 (k=3), A062709 (k=4), A140504 (k=5), A168614 (k=6), A153972 (k=7), A168415 (k=8), A242475 (k=9), A188165 (k=10), A246139 (k=11), this sequence (k=12).
Cf. A156940.

Programs

  • Magma
    [2^n+11: n in [0..30]]; // Vincenzo Librandi, Jan 19 2016
  • Mathematica
    Table[2^n + 11, {n, 0, 35}]
    LinearRecurrence[{3, -2}, {12, 13}, 40] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    a(n) = 2^n + 11; \\ Altug Alkan, Jan 18 2016
    

Formula

G.f.: (12 - 23*x)/(1 - 3*x + 2*x^2).
a(n) = 3*a(n - 1) - 2*a(n - 2) for n>1, a(0)=12, a(1)=13.
a(n) = A000079(n) + A010850(n).
Sum_{n>=0} 1/a(n) = 0.367971714327125...
Lim_{n->oo} a(n + 1)/a(n) = 2.
E.g.f.: exp(2*x) + 11*exp(x). - Elmo R. Oliveira, Nov 08 2023
Showing 1-5 of 5 results.