A156979 Primes p such that 1 = abs(largest digit of p - sum of all the other digits of p).
23, 43, 67, 89, 113, 131, 157, 179, 197, 199, 223, 241, 263, 269, 311, 313, 331, 337, 353, 359, 373, 379, 397, 421, 449, 461, 463, 571, 593, 607, 641, 643, 661, 683, 719, 733, 739, 751, 809, 827, 829, 863, 881, 919, 937, 953, 971, 991, 1013, 1031, 1033
Offset: 1
Examples
If prime=197(1<7<9) and 1=abs(9-(1+7)), then 197=a(10). If prime=199(1<9=9) and 1=abs(9-(9+1)), then 199=a(11). If prime=223(2=2<3) and 1=abs(3-(2+2)), then 223=a(12), etc.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..5000
Programs
-
Maple
From R. J. Mathar, Mar 18 2010: (Start) A007953 := proc(n) local d ; add(d,d= convert(n,base,10)) ; end proc: A054055 := proc(n) local d ; max(op(convert(n,base,10))) ; end proc: isA156979 := proc(n) isprime(n) and abs(A007953(n)-2*A054055(n)) = 1 ; end proc: for n from 1 to 1050 do if isA156979(n) then printf("%d,",n); end if; end do: (End)
-
Mathematica
ldodQ[n_]:=Module[{sidn=Sort[IntegerDigits[n]]},Abs[Total[Most[ sidn]]- Last[ sidn]] == 1]; Select[Prime[Range[200]],ldodQ] (* Harvey P. Dale, Nov 13 2013 *)