cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156979 Primes p such that 1 = abs(largest digit of p - sum of all the other digits of p).

Original entry on oeis.org

23, 43, 67, 89, 113, 131, 157, 179, 197, 199, 223, 241, 263, 269, 311, 313, 331, 337, 353, 359, 373, 379, 397, 421, 449, 461, 463, 571, 593, 607, 641, 643, 661, 683, 719, 733, 739, 751, 809, 827, 829, 863, 881, 919, 937, 953, 971, 991, 1013, 1031, 1033
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 20 2009

Keywords

Examples

			If prime=197(1<7<9) and 1=abs(9-(1+7)), then 197=a(10). If prime=199(1<9=9) and 1=abs(9-(9+1)), then 199=a(11). If prime=223(2=2<3) and 1=abs(3-(2+2)), then 223=a(12), etc.
		

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Mar 18 2010: (Start)
    A007953 := proc(n) local d ; add(d,d= convert(n,base,10)) ; end proc:
    A054055 := proc(n) local d ; max(op(convert(n,base,10))) ; end proc:
    isA156979 := proc(n) isprime(n) and abs(A007953(n)-2*A054055(n)) = 1 ; end proc:
    for n from 1 to 1050 do if isA156979(n) then printf("%d,",n); end if; end do: (End)
  • Mathematica
    ldodQ[n_]:=Module[{sidn=Sort[IntegerDigits[n]]},Abs[Total[Most[ sidn]]- Last[ sidn]] == 1]; Select[Prime[Range[200]],ldodQ] (* Harvey P. Dale, Nov 13 2013 *)