cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156991 Triangle T(n,k) read by rows: T(n,k) = n! * binomial(n + k - 1, n).

Original entry on oeis.org

1, 0, 1, 0, 2, 6, 0, 6, 24, 60, 0, 24, 120, 360, 840, 0, 120, 720, 2520, 6720, 15120, 0, 720, 5040, 20160, 60480, 151200, 332640, 0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200
Offset: 0

Views

Author

Roger L. Bagula, Feb 20 2009

Keywords

Comments

Apart from the left column of (essentially) zeros, the same as A105725. - R. J. Mathar, Mar 02 2009

Examples

			Triangle begins as:
  1;
  0,     1;
  0,     2,      6;
  0,     6,     24,      60;
  0,    24,    120,     360,     840;
  0,   120,    720,    2520,    6720,    15120;
  0,   720,   5040,   20160,   60480,   151200,   332640;
  0,  5040,  40320,  181440,  604800,  1663200,  3991680,   8648640;
  0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200;
  ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 98

Crossrefs

A092956 (row sums for n > 0).
Cf. A105725.

Programs

  • Mathematica
    Table[n!*Binomial[n+k-1, n], {n, 0, 12}, {k, 0, n}]//Flatten
  • PARI
    for(n=0,10, for(k=0,n, print1(n!*binomial(n+k-1,n), ", "))) \\ G. C. Greubel, Nov 19 2017
    
  • Sage
    flatten([[factorial(n)*binomial(n+k-1, n) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 10 2021
    
  • Sage
    for k in range(9):
        print([rising_factorial(n, k) for n in range(k+1)])
    # Peter Luschny, Mar 22 2022

Formula

T(n, k) = RisingFactorial(n, k). - Peter Luschny, Mar 22 2022