A156991 Triangle T(n,k) read by rows: T(n,k) = n! * binomial(n + k - 1, n).
1, 0, 1, 0, 2, 6, 0, 6, 24, 60, 0, 24, 120, 360, 840, 0, 120, 720, 2520, 6720, 15120, 0, 720, 5040, 20160, 60480, 151200, 332640, 0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200
Offset: 0
Examples
Triangle begins as: 1; 0, 1; 0, 2, 6; 0, 6, 24, 60; 0, 24, 120, 360, 840; 0, 120, 720, 2520, 6720, 15120; 0, 720, 5040, 20160, 60480, 151200, 332640; 0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640; 0, 40320, 362880, 1814400, 6652800, 19958400, 51891840, 121080960, 259459200; ...
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 98
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
Table[n!*Binomial[n+k-1, n], {n, 0, 12}, {k, 0, n}]//Flatten
-
PARI
for(n=0,10, for(k=0,n, print1(n!*binomial(n+k-1,n), ", "))) \\ G. C. Greubel, Nov 19 2017
-
Sage
flatten([[factorial(n)*binomial(n+k-1, n) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 10 2021
-
Sage
for k in range(9): print([rising_factorial(n, k) for n in range(k+1)]) # Peter Luschny, Mar 22 2022
Formula
T(n, k) = RisingFactorial(n, k). - Peter Luschny, Mar 22 2022
Comments