cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156993 a(n) = the least positive k such that n^2 and (n+k)^2 have no common digits, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 6, 5, 9, 3, 2, 1, 4, 4, 2, 6, 1, 3, 2, 1, 3, 5, 3, 3, 2, 2, 1, 4, 14, 31, 25, 13, 23, 26, 8, 7, 19, 17, 4, 3, 2, 1, 11, 16, 9, 28, 14, 6, 11, 4, 3, 8, 12, 9, 19, 19, 16, 5, 3, 13, 2, 21, 18, 23, 8, 22, 4, 5, 12, 14, 5, 16, 13, 14, 1, 7, 118, 5, 7, 8, 2, 7, 5, 4, 3, 2, 3, 66
Offset: 0

Views

Author

Zak Seidov, Feb 20 2009

Keywords

Comments

a(n)=1 for 18 values of n = sqrt(A068802);
for n<=1000, a(n)=0 for 22 values of n:
304,353,364,403,407,442,443,463,508,514,589,593,629,634,661,704,736,737,778, 805,807,818.
a(304)=0 because 304^2=92416 and no square can avoid one of digits 1,2,4,6,9:
each square ends with digits 1,4,5,6, or 9 (end zero doesn't matter), and if square ends with 5, then previous digit is 2;
also, a(353)=0 because 353^2=124609 and no square can avoid one of the same digits 1,2,4,6,9.

Examples

			a(0)=1 because squares 0^2=0 and (0+1)^2=1 have no common digits, a(9)=6 because squares 9^2=81 and (9+6)^2=225 have no common digits.
		

Crossrefs

Programs

  • Mathematica
    lpk[n_]:=Module[{k=1},While[ContainsAny[IntegerDigits[n^2], IntegerDigits[ (n+k)^2]], k++];k]Array[lpk,100,0] (* Harvey P. Dale, Jun 17 2016 *)