A157000 Triangle T(n,k) = (n/k)*binomial(n-k-1, k-1) read by rows.
2, 3, 4, 2, 5, 5, 6, 9, 2, 7, 14, 7, 8, 20, 16, 2, 9, 27, 30, 9, 10, 35, 50, 25, 2, 11, 44, 77, 55, 11, 12, 54, 112, 105, 36, 2, 13, 65, 156, 182, 91, 13, 14, 77, 210, 294, 196, 49, 2, 15, 90, 275, 450, 378, 140, 15, 16, 104, 352, 660, 672, 336, 64, 2, 17, 119, 442, 935, 1122, 714, 204, 17
Offset: 2
Examples
The table starts in row n=2, column k=1 as: 2; 3; 4, 2; 5, 5; 6, 9, 2; 7, 14, 7; 8, 20, 16, 2; 9, 27, 30, 9; 10, 35, 50, 25, 2; 11, 44, 77, 55, 11; 12, 54, 112, 105, 36, 2;
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 199
Links
- G. C. Greubel, Rows n = 2..100 of triangle, flattened
Programs
-
Magma
[[n*Binomial(n-k-1,k-1)/k: k in [1..Floor(n/2)]]: n in [2..20]]; // G. C. Greubel, Apr 25 2019
-
Mathematica
Table[(n/k)*Binomial[n-k-1, k-1], {n,2,20}, {k,1,Floor[n/2]}]//Flatten (* modified by G. C. Greubel, Apr 25 2019 *)
-
PARI
a(n,k)=n*binomial(n-k-1,k-1)/k; \\ Charles R Greathouse IV, Jul 10 2011
-
Sage
[[n*binomial(n-k-1,k-1)/k for k in (1..floor(n/2))] for n in (2..20)] # G. C. Greubel, Apr 25 2019
Formula
T(n,k) = binomial(n-k,k) + binomial(n-k-1,k-1). - Bert Seghers, Mar 02 2014
Extensions
Offset 2, keyword:tabf, more terms by the Assoc. Eds. of the OEIS, Nov 01 2010
Comments