cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157000 Triangle T(n,k) = (n/k)*binomial(n-k-1, k-1) read by rows.

Original entry on oeis.org

2, 3, 4, 2, 5, 5, 6, 9, 2, 7, 14, 7, 8, 20, 16, 2, 9, 27, 30, 9, 10, 35, 50, 25, 2, 11, 44, 77, 55, 11, 12, 54, 112, 105, 36, 2, 13, 65, 156, 182, 91, 13, 14, 77, 210, 294, 196, 49, 2, 15, 90, 275, 450, 378, 140, 15, 16, 104, 352, 660, 672, 336, 64, 2, 17, 119, 442, 935, 1122, 714, 204, 17
Offset: 2

Views

Author

Roger L. Bagula, Feb 20 2009

Keywords

Comments

Row sums are A001610(n-1).
Triangle A034807 (coefficients of Lucas polynomials) with the first column omitted. - Philippe Deléham, Mar 17 2013
T(n,k) is the number of ways to select k knights from a round table of n knights, no two adjacent. - Bert Seghers, Mar 02 2014

Examples

			The table starts in row n=2, column k=1 as:
   2;
   3;
   4,  2;
   5,  5;
   6,  9,   2;
   7, 14,   7;
   8, 20,  16,   2;
   9, 27,  30,   9;
  10, 35,  50,  25,  2;
  11, 44,  77,  55, 11;
  12, 54, 112, 105, 36, 2;
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 199

Crossrefs

Programs

  • Magma
    [[n*Binomial(n-k-1,k-1)/k: k in [1..Floor(n/2)]]: n in [2..20]]; // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    Table[(n/k)*Binomial[n-k-1, k-1], {n,2,20}, {k,1,Floor[n/2]}]//Flatten (* modified by G. C. Greubel, Apr 25 2019 *)
  • PARI
    a(n,k)=n*binomial(n-k-1,k-1)/k; \\ Charles R Greathouse IV, Jul 10 2011
    
  • Sage
    [[n*binomial(n-k-1,k-1)/k for k in (1..floor(n/2))] for n in (2..20)] # G. C. Greubel, Apr 25 2019

Formula

T(n,k) = binomial(n-k,k) + binomial(n-k-1,k-1). - Bert Seghers, Mar 02 2014

Extensions

Offset 2, keyword:tabf, more terms by the Assoc. Eds. of the OEIS, Nov 01 2010