A157003 Transform of Catalan numbers whose Hankel transform gives the Somos-4 sequence.
1, 1, 2, 4, 10, 27, 78, 234, 722, 2274, 7280, 23617, 77466, 256481, 856016, 2876940, 9728090, 33072228, 112974592, 387580856, 1334821448, 4613225722, 15994465796, 55615889745, 193904367362, 677709772035, 2374027931492, 8333765738127
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Daniela Colmenares, José L. Ramírez, Emmanuel D. Silva, Lina M. Simbaqueba, and Diana A. Toquica, Consecutive pattern-avoidance in Catalan words according to the last symbol, Univ. Bourgogne (France 2023).
- Paul Barry, Integer sequences from elliptic curves, arXiv:2306.05025 [math.NT], 2023.
- P. Gawrychowski and P. K. Nicholson, Encodings of Range Maximum-Sum Segment Queries and Applications, arXiv:1410.2847 [cs.DS], 2014-2015.
Crossrefs
Cf. A000108.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-Sqrt(1-4*x*(1-x^2)))/(2*x*(1-x^2)) )); // G. C. Greubel, Feb 26 2019 -
Mathematica
CoefficientList[Series[(1-Sqrt[1-4*x*(1-x^2)])/(2*x*(1-x^2)),{x,0,20}],x] (* Vaclav Kotesovec, Jan 27 2015 *)
-
PARI
my(x='x+O('x^30)); Vec((1-sqrt(1-4*x*(1-x^2)))/(2*x*(1-x^2))) \\ G. C. Greubel, Feb 26 2019
-
Sage
((1-sqrt(1-4*x*(1-x^2)))/(2*x*(1-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
Formula
G.f.: c(x*(1-x^2)) where c(x) is the g.f. of A000108;
a(n) = Sum_{k=0..n} (-1)^((n-k)/2)*(1+(-1)^(n-k))*C(k,floor((n-k)/2))*A000108(k)/2.
Conjecture: (n+1)*a(n) +(n+2)*a(n-1) +(-21*n+29)*a(n-2) +(3*n-16)*a(n-3) +40*(n-3)*a(n-4) +2*(-2*n+7)*a(n-5) +10*(-2*n+9)*a(n-6)=0. - R. J. Mathar, Nov 19 2014
Recurrence: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + (n+1)*a(n-2) - 8*(n-2)*a(n-3) + 2*(2*n-7)*a(n-5). - Vaclav Kotesovec, Feb 01 2015
a(n) ~ sqrt(3-8*r) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*sin(arccos(-3^(3/2)/8)/3 - Pi/6)/sqrt(3). - Vaclav Kotesovec, Jun 05 2022
Comments