cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A213221 Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A157004 and g(x) is the g.f. of A157003.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 18, 10, 4, 1, 58, 32, 15, 5, 1, 192, 106, 52, 21, 6, 1, 650, 357, 180, 79, 28, 7, 1, 2232, 1222, 624, 288, 114, 36, 8, 1, 7746, 4230, 2178, 1035, 439, 158, 45, 9, 1, 27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 02 2013

Keywords

Examples

			Triangle begins
1
2, 1
6, 3, 1
18, 10, 4, 1
58, 32, 15, 5, 1
192, 106, 52, 21, 6, 1
650, 357, 180, 79, 28, 7, 1
2232, 1222, 624, 288, 114, 36, 8, 1
7746, 4230, 2178, 1035, 439, 158, 45, 9, 1
27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1
95376, 51918, 27000, 13265, 6056, 2508, 911, 277, 66, 11, 1
337404, 183472, 95744, 47532, 22174, 9552, 3708, 1255, 354, 78, 12, 1
		

References

  • Baccherini, D.; Merlini, D.; Sprugnoli, R. Binary words excluding a pattern and proper Riordan arrays. Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See page 1032. - N. J. A. Sloane, Mar 25 2014

Crossrefs

Cf. A157003, A157004 (column k=0), A261058 (column k=1).

Formula

Column k has g.f. ((1-sqrt(1-4*x+4*x^3))/(2*(1-x^2)))^k/sqrt(1-4*x+4*x^3).
T(n,0) = 2*T(n,1) - 2*T(n-2,1), T(n+1,k+1) = T(n,k) + T(n+1,k+2) - T(n-1,k+2) for n>=0.

A243753 Number A(n,k) of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 4, 1, 1, 0, 0, 0, 1, 1, 2, 4, 1, 9, 1, 1, 0, 0, 0, 1, 1, 2, 4, 9, 1, 21, 1, 1, 0, 0, 0, 1, 1, 1, 4, 9, 21, 1, 51, 1, 1, 0, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 09 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1, 1, 1, 1,   1, 1,   1,   1,    1, ...
  0, 0, 0, 1, 1,   1, 1,   1,   1,    1, ...
  0, 0, 0, 1, 1,   1, 1,   2,   2,    2, ...
  0, 0, 0, 1, 1,   2, 1,   4,   4,    4, ...
  0, 0, 0, 1, 1,   4, 1,   9,   9,    9, ...
  0, 0, 0, 1, 1,   9, 1,  21,  21,   23, ...
  0, 0, 0, 1, 1,  21, 1,  51,  51,   63, ...
  0, 0, 0, 1, 1,  51, 1, 127, 127,  178, ...
  0, 0, 0, 1, 1, 127, 1, 323, 323,  514, ...
  0, 0, 0, 1, 1, 323, 1, 835, 835, 1515, ...
		

Crossrefs

Columns give: 0, 1, 2: A000007, 3, 4, 6: A000012, 5: A001006(n-1) for n>0, 7, 8, 14: A001006, 9: A135307, 10: A078481 for n>0, 11, 13: A105633(n-1) for n>0, 12: A082582, 15, 16: A036765, 19, 27: A114465, 20, 24, 26: A157003, 21: A247333, 25: A187256(n-1) for n>0.
Main diagonal gives A243754 or column k=0 of A243752.

Programs

  • Maple
    A:= proc(n, k) option remember; local b, m, r, h;
          if k<2 then return `if`(n=0, 1, 0) fi;
          m:= iquo(k, 2, 'r'); h:= 2^ilog2(k); b:=
          proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
            `if`(t=m and r=1, 0, b(x-1, y+1, irem(2*t+1, h)))+
            `if`(t=m and r=0, 0, b(x-1, y-1, irem(2*t, h)))))
          end; forget(b);
          b(2*n, 0, 0)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{b, m, r, h}, If[k<2, Return[If[n == 0, 1, 0]]]; {m, r} = QuotientRemainder[k, 2]; h = 2^Floor[Log[2, k]]; b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, If[t == m && r == 1, 0, b[x-1, y+1, Mod[2*t+1, h]]] + If[t == m && r == 0, 0, b[x-1, y-1, Mod[2*t, h]]]]]; b[2*n, 0, 0]]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)

A157004 Transform of central binomial coefficients A000984 whose Hankel transform obeys a Somos-4 recurrence.

Original entry on oeis.org

1, 2, 6, 18, 58, 192, 650, 2232, 7746, 27096, 95376, 337404, 1198546, 4272308, 15273888, 54744268, 196646922, 707747988, 2551624304, 9213416524, 33313656888, 120604436624, 437112790668, 1585877246424, 5759085911154
Offset: 0

Views

Author

Paul Barry, Feb 20 2009

Keywords

Comments

Hankel transform is A157005. Image of A000984 under Riordan array (1,x(1-x^2)).
Diagonal of rational function 1/(1 - x - y + x^3*y^2). - Seiichi Manyama, Mar 23 2023

Examples

			G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 58*x^4 + 192*x^5 + 650*x^6 + 2232*x^7 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(1-4*x+4*x^3) )); // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    CoefficientList[Series[1/Sqrt[1-4*x*(1-x^2)], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (2*m)!/m!^2 * x^(2*m)*(1-x)^m / (1-2*x+x*O(x^n))^(2*m+1)), n)} \\ Paul D. Hanna, Sep 21 2013
    
  • PARI
    my(x='x+O('x^30)); Vec(1/sqrt(1-4*x+4*x^3)) \\ G. C. Greubel, Feb 26 2019
    
  • Sage
    (1/sqrt(1-4*x+4*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019

Formula

G.f.: 1/sqrt(1 - 4*x*(1 - x^2)).
a(n) = Sum_{k=0..n} (-1)^((n-k)/2)*(1+(-1)^(n-k))*C(k,floor((n-k)/2)) *A000984(k)/2.
G.f.: Sum_{n>=0} (2*n)!/n!^2 * x^(2*n) * (1-x)^n / (1-2*x)^(2*n+1). - Paul D. Hanna, Sep 21 2013
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 2*(2*n-3)*a(n-3). - Vaclav Kotesovec, Feb 13 2014
a(n) ~ (1/r)^n / (sqrt(Pi*n) * sqrt(3-8*r)), where r = 0.2695944364054... is the root of the equation 4*r*(1-r^2)=1. - Vaclav Kotesovec, Feb 13 2014
0 = a(n)*(16*a(n+1) - 32*a(n+3) + 10*a(n+4)) + a(n+1)*(-2*a(n+3)) + a(n+2)*(16*a(n+3) - 6*a(n+4)) + a(n+3)*(-2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Sep 03 2016

A087626 Expansion of 2/(1-2x+sqrt(1-4x+4x^3)).

Original entry on oeis.org

1, 2, 5, 13, 36, 104, 311, 955, 2995, 9553, 30896, 101082, 333946, 1112496, 3732955, 12605029, 42800317, 146046819, 500555447, 1722402303, 5948047169, 20607691517, 71610355540, 249520257106, 871614139396, 3051737703526
Offset: 0

Views

Author

Michael Somos, Sep 16 2003

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 36*x^4 + 104*x^5 + 311*x^6 + 955*x^7 + ... - _Michael Somos_, Mar 28 2020
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(6+4*n)*a(n)+(-6-4*n)*a(n+1)+(-18-4*n)*a(2+n)+(24+5*n)*a(n+3)+(-6-n)*a(n+4), a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 13},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Oct 26 2018
  • Mathematica
    CoefficientList[Series[2/(1-2x+Sqrt[1-4x+4x^3]),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2017 *)
  • PARI
    {a(n) = polcoeff(2 / (1 - 2*x + sqrt(1 - 4*x + 4*x^3 + x*O(x^n))), n)};

Formula

G.f.: 2/(1-2x+sqrt(1-4x+4x^3)).
G.f. A(x) satisfies 0 = x^2*(1-x)*A(x)^2 - (1-2*x)*A(x) + 1.
First backwards difference is A056010.
(6+4*n)*a(n)+(-6-4*n)*a(n+1)+(-18-4*n)*a(2+n)+(24+5*n)*a(n+3)+(-6-n)*a(n+4)=0. - Robert Israel, Oct 26 2018
HANKEL transform is A006720(n+2). HANKEL transform with 0 prepended is -A051138.
INVERT transform of A157003. - Michael Somos, Mar 28 2020

A360271 a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-3*k,k) * Catalan(n-3*k).

Original entry on oeis.org

1, 1, 2, 5, 13, 38, 117, 373, 1222, 4085, 13877, 47766, 166229, 583893, 2067414, 7371093, 26440789, 95355990, 345538389, 1257486165, 4593933398, 16841578325, 61938532181, 228454719830, 844882459989, 3132258655573, 11638656376150, 43337083401557
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2023

Keywords

Crossrefs

Programs

  • Maple
    A360271 := proc(n)
        add((-1)^k*binomial(n-3*k,k)*A000108(n-3*k),k=0..n/3) ;
    end proc:
    seq(A360271(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k)/(n-3*k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/(1+(sqrt(1-4*x*(1-x^3)))))

Formula

G.f.: c(x * (1-x^3)), where c(x) is the g.f. of A000108.
a(n) ~ 2 * sqrt(1-3*r) / (sqrt(Pi) * n^(3/2) * r^n), where r = 0.2541737124933... is the smallest positive root of the equation 1 - 4*r + 4*r^4 = 0. - Vaclav Kotesovec, Feb 01 2023
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(-n-1)*a(n-3) +2*(4*n-11)*a(n-4) +4*(-n+5)*a(n-7)=0. - R. J. Mathar, Mar 12 2023

A377264 Consider the recurrence d(k) = (d(k-3)*d(k-2) + 1)/(d(k-5)*d(k-4)*d(k-3)^2*d(k-2)^2*d(k-1)), with d(0..4) = {1,1,1,2,1}. a(n) = numerator(d(2*n+1)).

Original entry on oeis.org

1, 2, 3, 14, 69, 413, 7222, 90211, 2577626, 127385577, 5092018073, 655664812074, 78618294607139, 13276948495989478, 5995083279193033837, 1895278734817024984181, 1542333923096758721461086, 1867485777936169465836858947, 2020248742951852823878208914098, 7078136335206254534330825538868049
Offset: 0

Views

Author

Thomas Scheuerle, Oct 22 2024

Keywords

Comments

Consider the sequence s(k) with ordinary generating function: 1/(1-d(0)*x/(1-d(1)*x/(1-d(2)*x/(...)))), the Hankel sequence transform of s(k) is A006720 starting with the third term.
This is a special case of a more general theorem: Consider the sequence h(k) with generating function 1/(1-c(0)*x/(1-c(1)*x/(1-c(2)*x/(...)))), if c(2*k+1) = (c(2*k-2)*c(2*k-1) + t)/(c(2*k-4)*c(2*k-3)*c(2*k-2)^2*c(2*k-1)^2*c(2*k)) for all k with c(< 0) = 1, then the Hankel sequence transform of h(k) satisfies a Somos-4 A(1, t) recurrence.
If we would change the start condition into d(0..4) = {1,1,-1,-2,(5/2)}, the expansion of the continued fraction generating function would give us A171416, its Hankel sequence transform is again A006720. There exist infinitely many sequences with the same Hankel sequence transform.

Crossrefs

The Hankel transform is directly related to A006720: A157002, A157003, A160702, A171416, A173992, A173993, A254314.

Programs

  • PARI
    d(n) = if(n<5, [1,1,1,2,1][n+1], (d(n-3)*d(n-2)+1)/(d(n-5)*d(n-4)*d(n-3)^2*d(n-2)^2*d(n-1)))
    a(n) = numerator(d(2*n+1))
    
  • PARI
    a(n) = -numerator(ellmul(ellinit([0, 3, -1, 2, 0]), [-1,0], 2*n+1)[1])

Formula

a(n) = A006720(n+1)*A006720(n+3).
denominator(d(2*n+1)) = A006720(n+2)^2.
-a(n)/A006720(n+3)^2 are the x-coordinates of (2*n+1) times [-1,0] on the curve y^2 - y = x^3 + 3*x^2 + 2*x. "Times" means here the multiplication under the elliptic group law.
Showing 1-6 of 6 results.