A213221
Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A157004 and g(x) is the g.f. of A157003.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 18, 10, 4, 1, 58, 32, 15, 5, 1, 192, 106, 52, 21, 6, 1, 650, 357, 180, 79, 28, 7, 1, 2232, 1222, 624, 288, 114, 36, 8, 1, 7746, 4230, 2178, 1035, 439, 158, 45, 9, 1, 27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1
Offset: 0
Triangle begins
1
2, 1
6, 3, 1
18, 10, 4, 1
58, 32, 15, 5, 1
192, 106, 52, 21, 6, 1
650, 357, 180, 79, 28, 7, 1
2232, 1222, 624, 288, 114, 36, 8, 1
7746, 4230, 2178, 1035, 439, 158, 45, 9, 1
27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1
95376, 51918, 27000, 13265, 6056, 2508, 911, 277, 66, 11, 1
337404, 183472, 95744, 47532, 22174, 9552, 3708, 1255, 354, 78, 12, 1
- Baccherini, D.; Merlini, D.; Sprugnoli, R. Binary words excluding a pattern and proper Riordan arrays. Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See page 1032. - N. J. A. Sloane, Mar 25 2014
A243753
Number A(n,k) of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 4, 1, 1, 0, 0, 0, 1, 1, 2, 4, 1, 9, 1, 1, 0, 0, 0, 1, 1, 2, 4, 9, 1, 21, 1, 1, 0, 0, 0, 1, 1, 1, 4, 9, 21, 1, 51, 1, 1, 0, 0, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 1, 1, 1, 1, 2, 2, 2, ...
0, 0, 0, 1, 1, 2, 1, 4, 4, 4, ...
0, 0, 0, 1, 1, 4, 1, 9, 9, 9, ...
0, 0, 0, 1, 1, 9, 1, 21, 21, 23, ...
0, 0, 0, 1, 1, 21, 1, 51, 51, 63, ...
0, 0, 0, 1, 1, 51, 1, 127, 127, 178, ...
0, 0, 0, 1, 1, 127, 1, 323, 323, 514, ...
0, 0, 0, 1, 1, 323, 1, 835, 835, 1515, ...
Columns give: 0, 1, 2:
A000007, 3, 4, 6:
A000012, 5:
A001006(n-1) for n>0, 7, 8, 14:
A001006, 9:
A135307, 10:
A078481 for n>0, 11, 13:
A105633(n-1) for n>0, 12:
A082582, 15, 16:
A036765, 19, 27:
A114465, 20, 24, 26:
A157003, 21:
A247333, 25:
A187256(n-1) for n>0.
Cf.
A242450,
A243827,
A243828,
A243829,
A243830,
A243831,
A243832,
A243833,
A243834,
A243835,
A243836.
-
A:= proc(n, k) option remember; local b, m, r, h;
if k<2 then return `if`(n=0, 1, 0) fi;
m:= iquo(k, 2, 'r'); h:= 2^ilog2(k); b:=
proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
`if`(t=m and r=1, 0, b(x-1, y+1, irem(2*t+1, h)))+
`if`(t=m and r=0, 0, b(x-1, y-1, irem(2*t, h)))))
end; forget(b);
b(2*n, 0, 0)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
A[n_, k_] := A[n, k] = Module[{b, m, r, h}, If[k<2, Return[If[n == 0, 1, 0]]]; {m, r} = QuotientRemainder[k, 2]; h = 2^Floor[Log[2, k]]; b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, If[t == m && r == 1, 0, b[x-1, y+1, Mod[2*t+1, h]]] + If[t == m && r == 0, 0, b[x-1, y-1, Mod[2*t, h]]]]]; b[2*n, 0, 0]]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)
A157004
Transform of central binomial coefficients A000984 whose Hankel transform obeys a Somos-4 recurrence.
Original entry on oeis.org
1, 2, 6, 18, 58, 192, 650, 2232, 7746, 27096, 95376, 337404, 1198546, 4272308, 15273888, 54744268, 196646922, 707747988, 2551624304, 9213416524, 33313656888, 120604436624, 437112790668, 1585877246424, 5759085911154
Offset: 0
G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 58*x^4 + 192*x^5 + 650*x^6 + 2232*x^7 + ...
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(1-4*x+4*x^3) )); // G. C. Greubel, Feb 26 2019
-
CoefficientList[Series[1/Sqrt[1-4*x*(1-x^2)], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
-
{a(n)=polcoeff(sum(m=0, n, (2*m)!/m!^2 * x^(2*m)*(1-x)^m / (1-2*x+x*O(x^n))^(2*m+1)), n)} \\ Paul D. Hanna, Sep 21 2013
-
my(x='x+O('x^30)); Vec(1/sqrt(1-4*x+4*x^3)) \\ G. C. Greubel, Feb 26 2019
-
(1/sqrt(1-4*x+4*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
A087626
Expansion of 2/(1-2x+sqrt(1-4x+4x^3)).
Original entry on oeis.org
1, 2, 5, 13, 36, 104, 311, 955, 2995, 9553, 30896, 101082, 333946, 1112496, 3732955, 12605029, 42800317, 146046819, 500555447, 1722402303, 5948047169, 20607691517, 71610355540, 249520257106, 871614139396, 3051737703526
Offset: 0
G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 36*x^4 + 104*x^5 + 311*x^6 + 955*x^7 + ... - _Michael Somos_, Mar 28 2020
-
f:= gfun:-rectoproc({(6+4*n)*a(n)+(-6-4*n)*a(n+1)+(-18-4*n)*a(2+n)+(24+5*n)*a(n+3)+(-6-n)*a(n+4), a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 13},a(n),remember):
map(f, [$0..50]); # Robert Israel, Oct 26 2018
-
CoefficientList[Series[2/(1-2x+Sqrt[1-4x+4x^3]),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2017 *)
-
{a(n) = polcoeff(2 / (1 - 2*x + sqrt(1 - 4*x + 4*x^3 + x*O(x^n))), n)};
A360271
a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-3*k,k) * Catalan(n-3*k).
Original entry on oeis.org
1, 1, 2, 5, 13, 38, 117, 373, 1222, 4085, 13877, 47766, 166229, 583893, 2067414, 7371093, 26440789, 95355990, 345538389, 1257486165, 4593933398, 16841578325, 61938532181, 228454719830, 844882459989, 3132258655573, 11638656376150, 43337083401557
Offset: 0
-
A360271 := proc(n)
add((-1)^k*binomial(n-3*k,k)*A000108(n-3*k),k=0..n/3) ;
end proc:
seq(A360271(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a(n) = sum(k=0, n\4, (-1)^k*binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k)/(n-3*k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/(1+(sqrt(1-4*x*(1-x^3)))))
A377264
Consider the recurrence d(k) = (d(k-3)*d(k-2) + 1)/(d(k-5)*d(k-4)*d(k-3)^2*d(k-2)^2*d(k-1)), with d(0..4) = {1,1,1,2,1}. a(n) = numerator(d(2*n+1)).
Original entry on oeis.org
1, 2, 3, 14, 69, 413, 7222, 90211, 2577626, 127385577, 5092018073, 655664812074, 78618294607139, 13276948495989478, 5995083279193033837, 1895278734817024984181, 1542333923096758721461086, 1867485777936169465836858947, 2020248742951852823878208914098, 7078136335206254534330825538868049
Offset: 0
-
d(n) = if(n<5, [1,1,1,2,1][n+1], (d(n-3)*d(n-2)+1)/(d(n-5)*d(n-4)*d(n-3)^2*d(n-2)^2*d(n-1)))
a(n) = numerator(d(2*n+1))
-
a(n) = -numerator(ellmul(ellinit([0, 3, -1, 2, 0]), [-1,0], 2*n+1)[1])
Showing 1-6 of 6 results.
Comments