cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A213221 Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A157004 and g(x) is the g.f. of A157003.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 18, 10, 4, 1, 58, 32, 15, 5, 1, 192, 106, 52, 21, 6, 1, 650, 357, 180, 79, 28, 7, 1, 2232, 1222, 624, 288, 114, 36, 8, 1, 7746, 4230, 2178, 1035, 439, 158, 45, 9, 1, 27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 02 2013

Keywords

Examples

			Triangle begins
1
2, 1
6, 3, 1
18, 10, 4, 1
58, 32, 15, 5, 1
192, 106, 52, 21, 6, 1
650, 357, 180, 79, 28, 7, 1
2232, 1222, 624, 288, 114, 36, 8, 1
7746, 4230, 2178, 1035, 439, 158, 45, 9, 1
27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1
95376, 51918, 27000, 13265, 6056, 2508, 911, 277, 66, 11, 1
337404, 183472, 95744, 47532, 22174, 9552, 3708, 1255, 354, 78, 12, 1
		

References

  • Baccherini, D.; Merlini, D.; Sprugnoli, R. Binary words excluding a pattern and proper Riordan arrays. Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See page 1032. - N. J. A. Sloane, Mar 25 2014

Crossrefs

Cf. A157003, A157004 (column k=0), A261058 (column k=1).

Formula

Column k has g.f. ((1-sqrt(1-4*x+4*x^3))/(2*(1-x^2)))^k/sqrt(1-4*x+4*x^3).
T(n,0) = 2*T(n,1) - 2*T(n-2,1), T(n+1,k+1) = T(n,k) + T(n+1,k+2) - T(n-1,k+2) for n>=0.

A157005 A Somos-4 variant.

Original entry on oeis.org

1, 2, 8, 24, 112, 736, 3776, 40192, 391424, 4203008, 85312512, 1270368256, 32235102208, 1038278549504, 27640704385024, 1549962593927168, 73624753456480256, 4273828146025070592, 435765959975516766208
Offset: 0

Views

Author

Paul Barry, Feb 20 2009

Keywords

Comments

Hankel transform of A157004.

Crossrefs

Programs

  • GAP
    a:=[1,2,8,24];; for n in [5..20] do a[n]:=(a[n-1]*a[n-3] + a[n-2]^2)/a[n-4]; od; a; # G. C. Greubel, Feb 23 2019
  • Magma
    I:=[1,2,8,24]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..20]]; // G. C. Greubel, Feb 23 2019
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[2]==8,a[3]==24,a[n]==(a[n-1] a[n-3]+a[n-2]^2)/a[n-4]},a,{n,20}]  (* Harvey P. Dale, Apr 30 2011 *)
  • PARI
    m=20; v=concat([1,2,8,24], vector(m-4)); for(n=5, m, v[n] = (v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Feb 23 2019
    
  • Sage
    def a(n):
        if (n==0): return 1
        elif (n==1): return 2
        elif (n==2): return 8
        elif (n==3): return 24
        else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
    [a(n) for n in (0..20)] # G. C. Greubel, Feb 23 2019
    

Formula

a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), with a(0)=1, a(1)=2, a(2)=8, a(3)=24.
a(n) = 2^n*A006720(n+2).

A360266 a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*(n-2*k),n-2*k).

Original entry on oeis.org

1, 2, 6, 22, 82, 312, 1210, 4752, 18834, 75184, 301856, 1217604, 4930626, 20032052, 81615072, 333328532, 1364264250, 5594210292, 22977466864, 94517423444, 389316529512, 1605533230256, 6628467569292, 27393187077144, 113310732332274, 469101108803052
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2023

Keywords

Comments

Diagonal of rational function 1/(1 - (x + y + x^3*y^2)). - Seiichi Manyama, Mar 23 2023

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(2*(n-2*k), n-2*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x^2)))

Formula

G.f.: 1/sqrt(1 - 4*x*(1 + x^2)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(2*n-3)*a(n-3).

A360219 a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-3*k,k) * binomial(2*(n-3*k),n-3*k).

Original entry on oeis.org

1, 2, 6, 20, 68, 240, 864, 3152, 11616, 43136, 161152, 604992, 2280416, 8624832, 32714688, 124399488, 474066560, 1810053120, 6922776576, 26517173760, 101710338048, 390603984896, 1501732753408, 5779500226560, 22263437981184, 85835254221824, 331193445626880
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2023

Keywords

Comments

Diagonal of rational function 1/(1 - x - y + x^4*y^3). - Seiichi Manyama, Mar 23 2023

Crossrefs

Programs

  • Maple
    A360219 := proc(n)
        add((-1)^k*binomial(n-3*k,k)*binomial(2*(n-3*k),n-3*k),k=0..n/3) ;
    end proc:
    seq(A360219(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x^3)))

Formula

G.f.: 1/sqrt(1 - 4*x*(1 - x^3)).
n*a(n) = 2*(2*n-1)*a(n-1) - 2*(2*n-4)*a(n-4).

A374598 Expansion of 1/sqrt(1 - 4*x - 8*x^3).

Original entry on oeis.org

1, 2, 6, 24, 94, 372, 1508, 6192, 25638, 106908, 448356, 1889040, 7989676, 33902504, 144259944, 615330784, 2630199942, 11263613484, 48315367076, 207556060816, 892819376964, 3845161246424, 16578320962104, 71548426931616, 309070048163676, 1336223562436632
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x-8*x^3))
    
  • PARI
    a(n) = sum(k=0, n\3, 2^k*binomial(n-2*k, k)*binomial(2*(n-2*k), n-2*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} 2^k * binomial(n-2*k,k) * binomial(2*(n-2*k),n-2*k).
n*a(n) = 2*(2*n-1)*a(n-1) + 4*(2*n-3)*a(n-3).

A168151 Riordan array (1/u,(1-u)/2), u=sqrt(1-4x+4*x^3).

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 18, 9, 4, 1, 58, 29, 13, 5, 1, 192, 96, 44, 18, 6, 1, 650, 325, 151, 64, 24, 7, 1, 2232, 1116, 524, 228, 90, 31, 8, 1, 7746, 3873, 1833, 813, 333, 123, 39, 9, 1, 27096, 13548, 6452, 2904, 1222, 473, 164, 48, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 19 2009

Keywords

Comments

T(n,0) = A157004(n).

Examples

			Triangle begins:
  1
  2 1
  6 3 1
  18 9 4 1
  58 29 13 5 1
  192 96 44 18 6 1
  650 325 151 64 24 7 1
  ...
		

References

  • Baccherini, D.; Merlini, D.; Sprugnoli, R. Binary words excluding a pattern and proper Riordan arrays. Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See Example 5.6. - N. J. A. Sloane, Mar 25 2014

Crossrefs

Formula

T(n,0) = 2*T(n,1) for n>0, T(0,0) = 1, T(n,k) = T(n-1,k-1)-T(n-3,k-1)+T(n,k+1).
Showing 1-6 of 6 results.