cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A171416 A sequence with Somos-4 Hankel transform.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 31, 65, 156, 351, 849, 1993, 4866, 11733, 28921, 70997, 176560, 438979, 1100302, 2761797, 6969909, 17625015, 44742636, 113822415, 290416803, 742486655, 1902767481, 4885201701, 12567065582, 32382099109, 83580301371
Offset: 0

Views

Author

Paul Barry, Dec 08 2009

Keywords

Comments

Hankel transform is the Somos-4 sequence A006720(n+2).
The generating function A(x) satisfies A(x) = 1 + x + x^2*A(x) + (x*A(x))^2.
BINOMIAL transform is A087626. HANKEL transform with a(0) omitted is A051138(n+2). - Michael Somos, Jan 11 2013

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 7*x^4 + 13*x^5 + 31*x^6 + 65*x^7 + 156*x^8 + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1-x^2-Sqrt(1-6*x^2-4*x^3+x^4))/(2*x^2))); // G. C. Greubel, Sep 22 2018
    
  • Maple
    m:=30; S:=series((1 -x^2 -sqrt(1-6*x^2-4*x^3+x^4))/(2*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 18 2020
  • Mathematica
    CoefficientList[Series[(1-x^2 -Sqrt[1 -6x^2 -4x^3 +x^4])/(2x^2), {x, 0, 30}], x] (* Or *)
    a[n_]:= a[n]= a[n-2] + Sum[a[k-1]a[n-k-1], {k, n-1}]; a[0]=a[1]=1; Array[a, 31, 0] (* Robert G. Wilson v, Mar 28 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2*(1 + x) / (1 - x^2 + sqrt(1 - 6*x^2 - 4*x^3 + x^4 + x*O(x^n))), n))}; /* Michael Somos, Jan 11 2013 */
    
  • Sage
    def A171416_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1 -x^2 -sqrt(1-6*x^2-4*x^3+x^4))/(2*x^2) ).list()
    A171416_list(30) # G. C. Greubel, Feb 18 2020

Formula

G.f.: (1 - x^2 - sqrt(1-6*x^2-4*x^3+x^4))/(2*x^2).
G.f.: (1/(1-x))*c(x^2/((1-x)*(1-x^2))) where c(x) is the g.f. of A000108.
G.f.: 1/(1-x-x^2/(1-x^2-x^2/(1-x-x^2/(1-x^2-x^2/(1-x-x^2/(1-x^2-x^2/(1-...))))))) (continued fraction).
a(n) = a(n-2) + Sum_{k=1..n-1} a(k-1)*a(n-k-1) with a(0)=a(1)=1.
Conjecture: (n+2)*a(n) +(n+1)*a(n-1) +6*(1-n)*a(n-2) +2*(11-5*n)*a(n-3) +(10-3*n)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Jul 24 2012
G.f.: 2*(1 + x) / (1 - x^2 + sqrt(1 - 6*x^2 - 4*x^3 + x^4)).
(n+2) * a(n) - (6*n-6) * a(n-2) - (4*n-10) * a(n-3) + (n-4) * a(n-4) = 0 if n>3. - Michael Somos, Jan 11 2013
If we write the generating function as 1/(1-b_{0}*x/(1-c_{0}x/(1-b_{1}*x/(1-c_{1}*x/(1-...))))), then b_{n}*c_{n} = A006720(n+1)*A006720(n+3)/A006720(n+2)^2 = A377264(n)/A006720(n+2)^2. - Thomas Scheuerle, Oct 22 2024
Showing 1-1 of 1 results.