cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307733 a(0) = a(1) = 1; a(n) = a(n-1) + a(n-2) + Sum_{k=0..n-1} a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, 4, 14, 54, 220, 934, 4090, 18344, 83850, 389214, 1829736, 8693962, 41685714, 201442188, 980091814, 4797070022, 23603701828, 116688837886, 579312087802, 2887020896016, 14437318756818, 72424982972862, 364366674463824, 1837954750285458
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
    nmax = 24; CoefficientList[Series[(1 - x - x^2 - Sqrt[1 - 6 x + 3 x^2 + 2 x^3 + x^4])/(2 x), {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: A(x) = (1 - x + x*A(x)^2) / (1 - x - x^2).
G.f.: (1 - x - x^2 - sqrt(1 - 6*x + 3*x^2 + 2*x^3 + x^4)) / (2*x).

A377264 Consider the recurrence d(k) = (d(k-3)*d(k-2) + 1)/(d(k-5)*d(k-4)*d(k-3)^2*d(k-2)^2*d(k-1)), with d(0..4) = {1,1,1,2,1}. a(n) = numerator(d(2*n+1)).

Original entry on oeis.org

1, 2, 3, 14, 69, 413, 7222, 90211, 2577626, 127385577, 5092018073, 655664812074, 78618294607139, 13276948495989478, 5995083279193033837, 1895278734817024984181, 1542333923096758721461086, 1867485777936169465836858947, 2020248742951852823878208914098, 7078136335206254534330825538868049
Offset: 0

Views

Author

Thomas Scheuerle, Oct 22 2024

Keywords

Comments

Consider the sequence s(k) with ordinary generating function: 1/(1-d(0)*x/(1-d(1)*x/(1-d(2)*x/(...)))), the Hankel sequence transform of s(k) is A006720 starting with the third term.
This is a special case of a more general theorem: Consider the sequence h(k) with generating function 1/(1-c(0)*x/(1-c(1)*x/(1-c(2)*x/(...)))), if c(2*k+1) = (c(2*k-2)*c(2*k-1) + t)/(c(2*k-4)*c(2*k-3)*c(2*k-2)^2*c(2*k-1)^2*c(2*k)) for all k with c(< 0) = 1, then the Hankel sequence transform of h(k) satisfies a Somos-4 A(1, t) recurrence.
If we would change the start condition into d(0..4) = {1,1,-1,-2,(5/2)}, the expansion of the continued fraction generating function would give us A171416, its Hankel sequence transform is again A006720. There exist infinitely many sequences with the same Hankel sequence transform.

Crossrefs

The Hankel transform is directly related to A006720: A157002, A157003, A160702, A171416, A173992, A173993, A254314.

Programs

  • PARI
    d(n) = if(n<5, [1,1,1,2,1][n+1], (d(n-3)*d(n-2)+1)/(d(n-5)*d(n-4)*d(n-3)^2*d(n-2)^2*d(n-1)))
    a(n) = numerator(d(2*n+1))
    
  • PARI
    a(n) = -numerator(ellmul(ellinit([0, 3, -1, 2, 0]), [-1,0], 2*n+1)[1])

Formula

a(n) = A006720(n+1)*A006720(n+3).
denominator(d(2*n+1)) = A006720(n+2)^2.
-a(n)/A006720(n+3)^2 are the x-coordinates of (2*n+1) times [-1,0] on the curve y^2 - y = x^3 + 3*x^2 + 2*x. "Times" means here the multiplication under the elliptic group law.
Showing 1-2 of 2 results.