cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A346506 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^2) / (1 - x + x^2).

Original entry on oeis.org

1, 2, 5, 17, 66, 274, 1190, 5341, 24577, 115326, 549747, 2654739, 12959468, 63848307, 317064921, 1585380283, 7975134892, 40332823042, 204947059412, 1045859173864, 5357606584326, 27540884494209, 142023060613755, 734506610474205, 3808771672620618, 19798640525731461, 103149287155802941
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; A[] = 0; Do[A[x] = (1 + x A[x]^2)/(1 - x + x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 2; a[n_] := a[n] = 2 a[n - 1] + a[n - 2] + Sum[a[k] a[n - k - 1], {k, 2, n - 1}]; Table[a[n], {n, 0, 26}]

Formula

a(0) = 1, a(1) = 2; a(n) = 2 * a(n-1) + a(n-2) + Sum_{k=2..n-1} a(k) * a(n-k-1).
From Nikolaos Pantelidis, Jan 08 2023 (Start)
G.f.: 1/G(0), where G(k) = 1-(2*x-x^2)/(1-x/G(k+1)) (continued fraction).
G.f.: (1-x+x^2-sqrt(x^4-2*x^3+3*x^2-6*x+1))/(2*x).
(End)

A386467 a(0) = a(1) = 1; a(n) = a(n-1) + a(n-2) + Sum_{k=0..n-1} k * a(k) * a(n-1-k).

Original entry on oeis.org

1, 1, 3, 11, 56, 353, 2619, 22175, 210077, 2196732, 25104008, 311139385, 4156661566, 59551385285, 910955221547, 14821776943015, 255639834413712, 4659720389150655, 89515541970546889, 1807824383345511646, 38294715773270374886, 849051935815301595992, 19665430140710069083996
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i<=2, 1, 0))); for(i=2, n, v[i+1]=v[i]+v[i-1]+sum(j=0, i-1, j*v[j+1]*v[i-j])); v;

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x - x^2 - x^2 * (d/dx A(x)) ).
Showing 1-2 of 2 results.