A157005 A Somos-4 variant.
1, 2, 8, 24, 112, 736, 3776, 40192, 391424, 4203008, 85312512, 1270368256, 32235102208, 1038278549504, 27640704385024, 1549962593927168, 73624753456480256, 4273828146025070592, 435765959975516766208
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..145
Programs
-
GAP
a:=[1,2,8,24];; for n in [5..20] do a[n]:=(a[n-1]*a[n-3] + a[n-2]^2)/a[n-4]; od; a; # G. C. Greubel, Feb 23 2019
-
Magma
I:=[1,2,8,24]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..20]]; // G. C. Greubel, Feb 23 2019
-
Mathematica
RecurrenceTable[{a[0]==1,a[1]==2,a[2]==8,a[3]==24,a[n]==(a[n-1] a[n-3]+a[n-2]^2)/a[n-4]},a,{n,20}] (* Harvey P. Dale, Apr 30 2011 *)
-
PARI
m=20; v=concat([1,2,8,24], vector(m-4)); for(n=5, m, v[n] = (v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Feb 23 2019
-
Sage
def a(n): if (n==0): return 1 elif (n==1): return 2 elif (n==2): return 8 elif (n==3): return 24 else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4) [a(n) for n in (0..20)] # G. C. Greubel, Feb 23 2019
Formula
a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), with a(0)=1, a(1)=2, a(2)=8, a(3)=24.
a(n) = 2^n*A006720(n+2).
Comments