A157012 Riordan's general Eulerian recursion: T(n,k) = (k+2)*T(n-1, k) + (n-k) * T(n-1, k-1), with T(n,0) = 1, T(n,n) = 0.
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 18, 14, 1, 0, 1, 58, 110, 33, 1, 0, 1, 179, 672, 495, 72, 1, 0, 1, 543, 3583, 5163, 1917, 151, 1, 0, 1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0, 1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0
Offset: 0
Examples
Triangle begins with: 1. 1, 0. 1, 1, 0. 1, 5, 1, 0. 1, 18, 14, 1, 0. 1, 58, 110, 33, 1, 0. 1, 179, 672, 495, 72, 1, 0. 1, 543, 3583, 5163, 1917, 151, 1, 0. 1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0. 1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0.
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Programs
-
Mathematica
e[n_, 0, m_]:= 1; e[n_, k_, m_]:= 0 /; k >= n; e[n_, k_, m_]:= (k+m)*e[n-1, k, m] +(n-k+1-m)*e[n-1, k-1, m]; Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}] T[n_, 0]:= 1; T[n_, n_]:= 0; T[n_, k_]:= T[n, k] = (k+2)*T[n-1, k] +(n-k) *T[n-1, k-1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
PARI
{T(n, k) = if(k==0, 1, if(k==n, 0, (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1)))}; for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
Sage
def T(n, k): if (k==0): return 1 elif (k==n): return 0 else: return (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 22 2019
Formula
e(n,k,m) = (k+m)*e(n-1, k, m) + (n-k+1-m)*e(n-1, k-1, m) for m=2.
T(n,k) = (k+2)*T(n-1, k) + (n-k)*T(n-1, k-1), with T(n,0) = 1, T(n,n) = 0. - G. C. Greubel, Feb 22 2019
Comments