cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157029 A007318 * A157019.

Original entry on oeis.org

1, 3, 7, 17, 39, 89, 203, 459, 1029, 2299, 5129, 11409, 25273, 55787, 122875, 270239, 593331, 1299883, 2841243, 6197855, 13499235, 29366411, 63809311, 138466835, 300036895, 649186659, 1402796793, 3027908077, 6529611587, 14068804905
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 21 2009

Keywords

Comments

Equals row sums of triangle A157028.

Examples

			a(4) = 17 = (1, 3, 3, 1) dot (1, 2, 2, 4) = (1 + 6 + 6 + 4). a(4) = 17 = sum of row 4 terms, triangle A157028: (8 + 5 + 3 + 1).
G.f.: A(x) = x + 3*x^2 + 7*x^3 + 17*x^4 + 39*x^5 + 89*x^6 + 203*x^7 + 459*x^8 + 1029*x^9 + 2299*x^10 + ...
such that
A(x) = x/((1-x) - x) + x^2*(1-x)^2/((1-x)^2 - x^2)^2 + x^3*(1-x)^6/((1-x)^3 - x^3)^3 + x^4*(1-x)^12/((1-x)^4 - x^4)^4 + x^5*(1-x)^20/((1-x)^5 - x^5)^5 + ...
		

Crossrefs

Formula

G.f.: Sum_{n>=1} x^n * (1-x)^(n*(n-1)) / ((1-x)^n - x^n)^n. - Paul D. Hanna, Mar 26 2018
G.f.: Sum_{n>=1} x^n/(1-x)^n / (1 - x^n/(1-x)^n)^n. - Paul D. Hanna, Mar 26 2018

Extensions

Extended by R. J. Mathar, Apr 07 2009