cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157053 Number of integer sequences of length n+1 with sum zero and sum of absolute values 8.

Original entry on oeis.org

2, 24, 162, 780, 2970, 9492, 26474, 66222, 151560, 322190, 643632, 1219374, 2206932, 3838590, 6447660, 10501172, 16639974, 25727292, 38906870, 57671880, 83945862, 120177024, 169447302, 235597650, 323371100, 438575202, 588265524, 780951962, 1026829680
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576, {n,50}] (* G. C. Greubel, Jan 23 2022 *)
  • Sage
    [n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576 for n in (1..50)] # G. C. Greubel, Jan 23 2022

Formula

a(n) = T(n,4); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1+3*x+9*x^2+9*x^3+9*x^4+3*x^5+x^6)/(1-x)^9. - Colin Barker, Mar 17 2012
a(n) = n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576. - Bruno Berselli, Mar 17 2012
E.g.f.: (x/576)*(1152 +5760*x +9216*x^2 +6432*x^3 +2208*x^4 +384*x^5 +32*x^6 +x^7)*exp(x). - G. C. Greubel, Jan 23 2022