A157088 Consider all consecutive integer Pythagorean septuples (X, X+1, X+2, X+3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
0, 21, 312, 4365, 60816, 847077, 11798280, 164328861, 2288805792, 31878952245, 444016525656, 6184352406957, 86136917171760, 1199732487997701, 16710117914796072, 232741918319147325, 3241676738553266496, 45150732421426583637, 628868577161418904440, 8759009347838438078541
Offset: 0
Examples
a(2)=312 since 312^2 + 313^2 + 314^2 + 315^2 = 361^2 + 361^2 + 363^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..870
- Tanya Khovanova, Recursive Sequences
- Ron Knott, Pythagorean Triples and Online Calculators
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
Programs
-
Magma
[Round((3^(n+1)*((1+Sqrt(4/3))^(2*n+1)+(1-Sqrt(4/3))^(2*n+1))-2*3)/4): n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
Mathematica
CoefficientList[Series[3*x*(-7 + x)/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
-
PARI
my(x='x+O('x^50)); concat([0], Vec(3*x*(-7+x)/((x-1)*(x^2-14*x+1)))) \\ G. C. Greubel, Nov 04 2017
Formula
For n > 1, a(n) = 14*a(n-1) - a(n-2) + 18.
For n > 0, a(n) = 7*a(n-1) + 6*A157089(n-1) + 3.
Limit_{n->oo} a(n+1)/a(n) = 3*(1+sqrt(4/3))^2 = 7 + 2*sqrt(12).
a(n) = (3^(n+1)*((1+sqrt(4/3))^(2*n+1) + (1-sqrt(4/3))^(2*n+1)) - 2*3)/4.
From R. J. Mathar, Mar 19 2009: (Start)
G.f.: 3*x*(-7+x)/((x-1)*(x^2-14*x+1)).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) = 3*A001921(n). (End)
Comments