A157089 Consider all consecutive integer Pythagorean septuples (X, X+1, X+2, X+3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives Z values.
3, 27, 363, 5043, 70227, 978123, 13623483, 189750627, 2642885283, 36810643323, 512706121227, 7141075053843, 99462344632563, 1385331749802027, 19295182152595803, 268747218386539203, 3743165875258953027
Offset: 0
Examples
a(3) = 363 since 312^2 + 313^2 + 314^2 + 315^2 = 361^2 + 362^2 + 363^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
Links
- Tanya Khovanova, Recursive Sequences
- Ron Knott, Pythagorean Triples and Online Calculators
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
Programs
-
Mathematica
LinearRecurrence[{15,-15,1},{3,27,363},20] (* Harvey P. Dale, May 14 2022 *)
Formula
For n > 1, a(n) = 14*a(n-1) - a(n-2) - 12.
a(n) = 8*a(n-1) + 7*A157088(n-1) + 6.
G.f.: (3-18*x+3*x^2)/(1-15*x+15*x^2-x^3). - Colin Barker, Jan 01 2012
From Gerry Martens, Aug 19 2025: (Start)
a(n) = ((1 + sqrt(3))^(2*n+1) - (1 - sqrt(3))^(2*n+1))^2/4^(n+1).
a(n) = 1/(3*4^n)*(Sum_{k=0..n} binomial(2*n+1, 2*k+1)*3^(k+1))^2. (End)
Comments