cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157100 Transform of Catalan numbers whose Hankel transform satisfies the Somos-4 recurrence.

Original entry on oeis.org

1, 2, 3, 6, 14, 37, 105, 312, 956, 2996, 9554, 30897, 101083, 333947, 1112497, 3732956, 12605030, 42800318, 146046820, 500555448, 1722402304, 5948047170, 20607691518, 71610355541, 249520257107, 871614139397, 3051737703527
Offset: 0

Views

Author

Paul Barry, Feb 22 2009

Keywords

Comments

Hankel transform is A157101.
The ratio of this generating function by the generating function of A025262 is x*(1-x), which means this sequence is the partial sums of A025262. - Sean A. Irvine, R. J. Mathar, Jun 27 2022

Crossrefs

Partial sums of A025262.

Programs

  • Mathematica
    a[n_]:= Sum[(-1)^Binomial[k, 2]*Binomial[n-k, Floor[k/2]]*CatalanNumber[n-k], {k,0,n}];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jan 11 2022 *)
  • Sage
    def A157100(n): return sum((-1)^binomial(k,2)*binomial(n-k, k//2)*catalan_number(n-k) for k in (0..n))
    [A157100(n) for n in (0..40)] # G. C. Greubel, Jan 11 2022

Formula

G.f.: (1+x)*c(x*(1-x^2)), c(x) the g.f. of A000108;
a(n) = Sum_{k=0..n} (-1)^binomial(n-k,2)*binomial(k,floor((n-k)/2))*A000108(k).
Conjecture: (n+1)*a(n) +(-5*n+1)*a(n-1) +2*(2*n-1)*a(n-2) +2*(2*n-7)*a(n-3) +2*(-2*n+7)*a(n-4) = 0. - R. J. Mathar, Feb 05 2015