A157100 Transform of Catalan numbers whose Hankel transform satisfies the Somos-4 recurrence.
1, 2, 3, 6, 14, 37, 105, 312, 956, 2996, 9554, 30897, 101083, 333947, 1112497, 3732956, 12605030, 42800318, 146046820, 500555448, 1722402304, 5948047170, 20607691518, 71610355541, 249520257107, 871614139397, 3051737703527
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[n_]:= Sum[(-1)^Binomial[k, 2]*Binomial[n-k, Floor[k/2]]*CatalanNumber[n-k], {k,0,n}]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jan 11 2022 *)
-
Sage
def A157100(n): return sum((-1)^binomial(k,2)*binomial(n-k, k//2)*catalan_number(n-k) for k in (0..n)) [A157100(n) for n in (0..40)] # G. C. Greubel, Jan 11 2022
Formula
G.f.: (1+x)*c(x*(1-x^2)), c(x) the g.f. of A000108;
a(n) = Sum_{k=0..n} (-1)^binomial(n-k,2)*binomial(k,floor((n-k)/2))*A000108(k).
Conjecture: (n+1)*a(n) +(-5*n+1)*a(n-1) +2*(2*n-1)*a(n-2) +2*(2*n-7)*a(n-3) +2*(-2*n+7)*a(n-4) = 0. - R. J. Mathar, Feb 05 2015
Comments