A157103 Array A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 5, 12, 10, 4, 1, 1, 8, 29, 33, 17, 5, 1, 1, 13, 70, 109, 72, 26, 6, 1, 1, 21, 169, 360, 305, 135, 37, 7, 1, 1, 34, 408, 1189, 1292, 701, 228, 50, 8, 1, 1, 55, 985, 3927, 5473, 3640, 1405, 357, 65, 9, 1
Offset: 0
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012); 1, 1, 2, 3, 4, 5, 6, 7, ... (A000027); 1, 2, 5, 10, 17, 26, 37, 50, ... (A002522); 1, 3, 12, 33, 72, 135, 228, 357, ...; 1, 5, 29, 109, 305, 701, 1405, 2549, ...; 1, 8, 70, 360, 1292, 3640, 8658, 18200, ...; 1, 13, 169, 1189, 5473, 18901, 53353, 129949, ...; 1, 21, 408, 3927, 23184, 98145, 328776, 927843, ...; ... First few rows of the triangle: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 3, 5, 3, 1; 1, 5, 12, 10, 4, 1; 1, 8, 29, 33, 17, 5, 1; 1, 13, 70, 109, 72, 26, 6, 1; 1, 21, 169, 360, 305, 135, 37, 7, 1; 1, 34, 408, 1189, 1292, 701, 228, 50, 8, 1; 1, 55, 985, 3927, 5473, 3640, 1405, 357, 65, 9, 1; 1, 89, 2378, 12970, 23184, 18901, 8658, 2549, 528, 82, 10, 1; 1, 144, 5741, 42837, 98209, 98145, 53353, 18200, 4289, 747, 101, 11, 1; ... Example: Column 3 = (1, 3, 10, 33, 109, 360, ...) = A006190.
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015. See Table 3.
Crossrefs
Programs
-
Magma
A157103:= func< n,k | k eq 0 or k eq n select 1 else Evaluate(DicksonSecond(n, -1), k) >; [A157103(n-k, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 11 2022
-
Maple
A157103 := proc(n,k) if k = 0 then 1; else mul(k-2*I*cos(l*Pi/(n+1)),l=1..n) ; combine(%,trig) ; round(%) ; end if; end proc: seq( seq(A157103(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Feb 27 2023
-
Mathematica
(* First program *) T[, 0]=1; T[n, n_]=1; T[, ]=0; T[n_, k_] /; 0 <= k <= n := k T[n-1, k] + T[n-2, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Aug 07 2018 *) (* Second program *) T[n_, k_]:= If[k==0 || k==n, 1, Fibonacci[n-k+1, k]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 11 2022 *)
-
Sage
def A157103(n,k): return 1 if (k==0 or k==n) else lucas_number1(n+1, k, -1) flatten([[A157103(n-k, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 11 2022
Formula
A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1 (array).
A(n, 1) = A000045(n+1).
T(n, k) = k*T(n-1, k) + T(n-2, k) with T(n, 0) = T(n, n) = 1 (triangle).
From G. C. Greubel, Jan 11 2022: (Start)
T(n, k) = Fibonacci(n-k+1, k), with T(n, 0) = T(n, n) = 1.
T(2*n, n) = A084845(n) for n >= 1, with T(0, 0) = 1.
T(2*n+1, n+1) = A084844(n). (End)
Extensions
Edited by G. C. Greubel, Jan 11 2022
Comments