A157110 a(n) = 1681*n^2 - 2606*n + 1010.
85, 2522, 8321, 17482, 30005, 45890, 65137, 87746, 113717, 143050, 175745, 211802, 251221, 294002, 340145, 389650, 442517, 498746, 558337, 621290, 687605, 757282, 830321, 906722, 986485, 1069610, 1156097, 1245946, 1339157, 1435730, 1535665
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1 [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[85, 2522, 8321]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 25 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{85,2522,8321},40] (* Vincenzo Librandi, Jan 25 2012 *) Table[1681*n^2-2606*n+1010,{n,40}] (* Harvey P. Dale, Nov 24 2024 *)
-
PARI
for(n=1, 22, print1(1681*n^2 - 2606*n + 1010", ")); \\ Vincenzo Librandi, Jan 25 2012
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 25 2012
G.f.: x*(-85 - 2267*x - 1010*x^2)/(x-1)^3. - Vincenzo Librandi, Jan 25 2012
From Klaus Purath, Apr 18 2025: (Start)
a(n) = (9*n - 7)^2 + (40*n - 31)^2 for any integer n.
1681*a(n) - 1 = (1681*n - 1303)^2 for any integer n. (End)
Comments