cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157116 Numbers k such that k^2 + 1 == 0 (mod 41^2).

Original entry on oeis.org

378, 1303, 2059, 2984, 3740, 4665, 5421, 6346, 7102, 8027, 8783, 9708, 10464, 11389, 12145, 13070, 13826, 14751, 15507, 16432, 17188, 18113, 18869, 19794, 20550, 21475, 22231, 23156, 23912, 24837, 25593, 26518, 27274, 28199, 28955, 29880
Offset: 1

Views

Author

Vincenzo Librandi, Feb 23 2009

Keywords

Examples

			378^2 + 1 == 0 (mod 41^2).
1303^2 + 1 == 0 (mod 41^2).
2059^2 + 1 == 0 (mod 41^2).
		

Crossrefs

Programs

  • Magma
    [(3362*n-1681+169*(-1)^n)/4: n in [1..40]]; // Vincenzo Librandi, Sep 11 2013
  • Mathematica
    CoefficientList[Series[(14 x + 27) (27 x + 14) / ((1 + x) (x - 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 11 2013 *)
    Select[Range[30000],PowerMod[#,2,1681]==1680&] (* or *) LinearRecurrence[ {1,1,-1},{378,1303,2059},40] (* Harvey P. Dale, Jul 05 2021 *)

Formula

a(1)=378, a(2)=1303; a(n) = 2*a(n-1) - a(n-2) - 13^2 if n is odd, and a(n) = 2*a(n-1) - a(n-2) + 13^2 if n is even.
From R. J. Mathar, Mar 08 2009: (Start)
a(n) = (3362n - 1681 + 169*(-1)^n)/4.
G.f.: x*(14*x+27)*(27*x+14)/((1+x)*(x-1)^2). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(378*Pi/1681)*Pi/1681. - Amiram Eldar, Feb 26 2023