cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157117 Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A008292(n*k + 1, n-k) if k <= n otherwise A008292(n*(n-k), k), read by rows.

Original entry on oeis.org

2, 1, 1, 1, 8, 1, 1, 131, 131, 1, 1, 8204, 29216, 8204, 1, 1, 2097187, 44136233, 44136233, 2097187, 1, 1, 2147483736, 846839476071, 503464582368, 846839476071, 2147483736, 1, 1, 8796093022411, 150092195453359483, 288159195861579519, 288159195861579519, 150092195453359483, 8796093022411, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 23 2009

Keywords

Examples

			  2;
  1,          1;
  1,          8,            1;
  1,        131,          131,            1;
  1,       8204,        29216,         8204,            1;
  1,    2097187,     44136233,     44136233,      2097187,          1;
  1, 2147483736, 846839476071, 503464582368, 846839476071, 2147483736, 1;
		

Crossrefs

Programs

  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;
    f:= func< n,k | k le n select Eulerian(n*k+1,n-k) else Eulerian(n*(n-k)+1, k) >;
    A157117:= func< n,k | f(n,k) + f(n,n-k) >;
    [A157117(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
    
  • Mathematica
    f[n_, k_]:= If[k<=n, Eulerian[n*k+1,n-k], Eulerian[n*(n-k)+1,k]];
    T[n_, k_]:= f[n,k] + f[n,n-k];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
  • Sage
    def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
    def f(n,k): return Eulerian(n*k+1,n-k) if (kA157117(n,k): return f(n,k) + f(n,n-k)
    flatten([[A157117(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022

Formula

T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A008292(n*k + 1, n-k) if k <= n otherwise A008292(n*(n-k), k).
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 11 2022