A157118 Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1, read by rows.
2, 1, 1, 1, 6, 1, 1, 27, 27, 1, 1, 88, 672, 88, 1, 1, 225, 9150, 9150, 225, 1, 1, 486, 98385, 395352, 98385, 486, 1, 1, 931, 1126951, 11748681, 11748681, 1126951, 931, 1, 1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1, 1, 2673, 201755880, 16093941435, 32251030119, 32251030119, 16093941435, 201755880, 2673, 1
Offset: 0
Examples
Triangle begins as: 2; 1, 1; 1, 6, 1; 1, 27, 27, 1; 1, 88, 672, 88, 1; 1, 225, 9150, 9150, 225, 1; 1, 486, 98385, 395352, 98385, 486, 1; 1, 931, 1126951, 11748681, 11748681, 1126951, 931, 1; 1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A001263:= func< n,k | Binomial(n-1,k-1)*Binomial(n,k)/(n-k+1) >; f:= func< n,k | k le n select A001263(n*k+1,n-k+1) else A001263(n*(n-k)+1, k+1) >; A157118:= func< n,k | n eq 1 select 1 else f(n,k) + f(n,n-k) >; [A157118(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
-
Mathematica
A001263[n_, k_]:= Binomial[n-1,k-1]*Binomial[n,k]/(n-k+1); f[n_, k_]:= If[k<=n, A001263[n*k+1,n-k+1], A001263[n*(n-k)+1,k+1]]; T[n_, k_]:= If[n==1, 1, f[n,k] + f[n,n-k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
-
Sage
def A001263(n,k): return binomial(n-1,k-1)*binomial(n,k)/(n-k+1) def f(n,k): return A001263(n*k+1,n-k+1) if (k
A001263(n*(n-k)+1, k+1) def A157118(n,k): return 1 if (n==1) else f(n,k) + f(n,n-k) flatten([[A157118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022
Formula
Extensions
Edited by G. C. Greubel, Jan 11 2022