cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157118 Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1, read by rows.

Original entry on oeis.org

2, 1, 1, 1, 6, 1, 1, 27, 27, 1, 1, 88, 672, 88, 1, 1, 225, 9150, 9150, 225, 1, 1, 486, 98385, 395352, 98385, 486, 1, 1, 931, 1126951, 11748681, 11748681, 1126951, 931, 1, 1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1, 1, 2673, 201755880, 16093941435, 32251030119, 32251030119, 16093941435, 201755880, 2673, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 23 2009

Keywords

Examples

			Triangle begins as:
  2;
  1,    1;
  1,    6,        1;
  1,   27,       27,         1;
  1,   88,      672,        88,         1;
  1,  225,     9150,      9150,       225,         1;
  1,  486,    98385,    395352,     98385,       486,        1;
  1,  931,  1126951,  11748681,  11748681,   1126951,      931,    1;
  1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1;
		

Crossrefs

Programs

  • Magma
    A001263:= func< n,k | Binomial(n-1,k-1)*Binomial(n,k)/(n-k+1) >;
    f:= func< n,k | k le n select A001263(n*k+1,n-k+1) else A001263(n*(n-k)+1, k+1) >;
    A157118:= func< n,k | n eq 1 select 1 else f(n,k) + f(n,n-k) >;
    [A157118(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
    
  • Mathematica
    A001263[n_, k_]:= Binomial[n-1,k-1]*Binomial[n,k]/(n-k+1);
    f[n_, k_]:= If[k<=n, A001263[n*k+1,n-k+1], A001263[n*(n-k)+1,k+1]];
    T[n_, k_]:= If[n==1, 1, f[n,k] + f[n,n-k]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
  • Sage
    def A001263(n,k): return binomial(n-1,k-1)*binomial(n,k)/(n-k+1)
    def f(n,k): return A001263(n*k+1,n-k+1) if (kA001263(n*(n-k)+1, k+1)
    def A157118(n,k): return 1 if (n==1) else f(n,k) + f(n,n-k)
    flatten([[A157118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022

Formula

T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1.
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 11 2022