A157120 Positive numbers y such that y^2 is of the form x^2+(x+103)^2 with integer x.
73, 103, 205, 233, 515, 1157, 1325, 2987, 6737, 7717, 17407, 39265, 44977, 101455, 228853, 262145, 591323, 1333853, 1527893, 3446483, 7774265, 8905213, 20087575, 45311737, 51903385, 117078967, 264096157, 302515097, 682386227, 1539265205
Offset: 1
Examples
(-48, a(1)) = (-48, 73) is a solution: (-48)^2+(-48+103)^2 = 2304+3025 = 5329 = 73^2. (A157119(1), a(2)) = (0, 103) is a solution: 0^2+(0+103)^2 = 10609 = 103^2, (A157119(3), a(4)) = (105, 233) is a solution: 105^2+(105+103)^2 = 11025+43264 = 54289 = 233^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Mathematica
Select[Table[Sqrt[x^2+(x+103)^2],{x,-50,3*10^6}],IntegerQ] (* THe program generates the first 20 terms of the sequence. *) (* or *) LinearRecurrence[ {0,0,6,0,0,-1},{73,103,205,233,515,1157},50](* Harvey P. Dale, Aug 19 2020 *)
-
PARI
{forstep(n=-48, 1100000000, [1, 3], if(issquare(2*n^2+206*n+10609, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1) = 73, a(2) = 103, a(3) = 205, a(4) = 233, a(5) = 515, a(6) = 1157.
G.f.: x*(1-x)*(73+176*x+381*x^2+176*x^3+73*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 103*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))*(11-3*sqrt(2))^2/(11+3*sqrt(2))^2 for n mod 3 = 1.
Limit_{n -> oo} a(n)/a(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {0, 2}.
Extensions
Typo corrected by Klaus Brockhaus, Mar 01 2009
Comments