A157150 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4, read by rows.
1, 1, 1, 1, 14, 1, 1, 87, 87, 1, 1, 460, 1790, 460, 1, 1, 2333, 24178, 24178, 2333, 1, 1, 11706, 271983, 693068, 271983, 11706, 1, 1, 58579, 2786993, 14794139, 14794139, 2786993, 58579, 1, 1, 292952, 27109300, 267169640, 547357078, 267169640, 27109300, 292952, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 14, 1; 1, 87, 87, 1; 1, 460, 1790, 460, 1; 1, 2333, 24178, 24178, 2333, 1; 1, 11706, 271983, 693068, 271983, 11706, 1; 1, 58579, 2786993, 14794139, 14794139, 2786993, 58579, 1; 1, 292952, 27109300, 267169640, 547357078, 267169640, 27109300, 292952, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Maple
A157150:= proc(n, k); if k<0 or n
A157150(n, k), k=0..n), n=0..10); # R. J. Mathar, Feb 06 2015 -
Mathematica
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]]; Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
Sage
@CachedFunction def T(n,k,m): # A157150 if (k==0 or k==n): return 1 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m) flatten([[T(n,k,4) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
Formula
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4.
T(n, n-k) = T(n, k).
Extensions
Edited by G. C. Greubel, Jan 09 2022