A157151 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5, read by rows.
1, 1, 1, 1, 17, 1, 1, 123, 123, 1, 1, 769, 3046, 769, 1, 1, 4655, 49500, 49500, 4655, 1, 1, 27981, 673015, 1721070, 673015, 27981, 1, 1, 167947, 8363421, 44640435, 44640435, 8363421, 167947, 1, 1, 1007753, 98882848, 982172031, 2012583870, 982172031, 98882848, 1007753, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 17, 1; 1, 123, 123, 1; 1, 769, 3046, 769, 1; 1, 4655, 49500, 49500, 4655, 1; 1, 27981, 673015, 1721070, 673015, 27981, 1; 1, 167947, 8363421, 44640435, 44640435, 8363421, 167947, 1; 1, 1007753, 98882848, 982172031, 2012583870, 982172031, 98882848, 1007753, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Maple
A157151:= proc(n, k) if k<0 or n
A157151(n, k), k=0..n), n=0..10); # R. J. Mathar, Feb 06 2015 -
Mathematica
T[n_, k_, m_]:= T[n,k,m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]]; Table[T[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
Sage
def T(n,k,m): # A157147 if (k==0 or k==n): return 1 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m) flatten([[T(n,k,5) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 09 2022
Formula
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5.
T(n, n-k, 5) = T(n, k, 5).
Extensions
Edited by G. C. Greubel, Jan 09 2022