A157161 Formal infinite product representation for the Catalan numbers (A000108) o.g.f. series.
1, 2, 3, 11, 25, 79, 245, 869, 2692, 9544, 32065, 115381, 400023, 1462730, 5165327, 19165035, 68635477, 255546242, 930138521, 3491772737, 12810761323, 48334512920, 178987624513, 678272753284, 2528210175630, 9616904064021, 36047930953482, 137654448221760, 518401146543811
Offset: 1
Examples
Recurrence I: a(4) = C(4) - a(1)*a(3) = 14 - 1*3 = 11. Recurrence II: a(4)= 2*(-1)^2 + (1*C(4)-(1/2)*(2*C(1)*C(3) + 1*C(2)^2) + (1/3)*3*C(1)^2*C(2)) = 2 + (14 - (10+4)/2 + 2) = 11. Recurrence II (rewritten): a(4)= (1/4)*(-a(1))^4 + (1/2)*(-a(2))^2 + 7!/4!^2 = 11.
Links
Crossrefs
Cf. A147542 (for Fibonacci numbers).
Formula
Product_{n>=1} (1 + a(n)*x^n) = Sum_{k>=1} C(k)*x^k = (1-sqrt(1-4*x))/(2*x), with C(n)= A000108(n) (Catalan numbers).
Recurrence I: With FP(n,m) the set of partitions of n with m distinct parts (which could be called fermionic partitions (fp)):
a(n)= C(n) - sum(sum(product(a(k[j]),j=1..m), fp from FP(n,m)), m=2..maxm(n)), with maxm(n):=A003056(n) and the distinct parts k[j], j=1,...,m, of the partition fp of n, n>=3. Inputs a(1)=C(1)=1, a(2)=C(2)=2. See the array A008289(n,m) for the cardinality of the set FP(n,m).
Recurrence II: With P(n,m) the set of all partitions of n with m parts, and the multinomial numbers M0 (given for every partition under A048996):
a(n) = sum((d/n)*(-a(d)^(n/d)),d|n with 1=2; a(1)=C(1)=1. The exponents e(j)>=0 satisfy sum(j*e(j),j=1..n)=n and sum(e(j),j=1..m). If e_j=0 then part j does not appear. The M0 numbers are m!/product(e(j)!,j=1..n).
Recurrence II (rewritten, thanks to email from V. Jovovic, Mar 10 2009):
Comments