cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A157163 Product_{n>=1} (1 + 2*a(n)*x^n) = Sum_{k>=0} binomial(2*k, k)*x^k = 1/sqrt(1 - 4*x), with the central binomial numbers A000984(n).

Original entry on oeis.org

1, 3, 4, 27, 48, 156, 576, 2955, 7168, 27792, 95232, 352188, 1290240, 5105856, 17743872, 77010795, 252641280, 1000224768, 3616800768, 14484040464, 52102692864, 208963943424, 764877471744, 3025006038012, 11258183024640, 44968060784640, 166308918329344
Offset: 1

Views

Author

Wolfdieter Lang, Aug 10 2009

Keywords

Comments

In the original problem 2*a(n) = [2, 6, 8, 54, 96, 312, 1152, 5910, 14336, 55584, 190464, 704376, ...] appears.

Examples

			Recurrence I: a(4) = binomial(8, 4)/2 - 2*a(1)*a(3) = 35 - 8 = 27.
Recurrence II: a(4) = (1/2)*(1/2)*(-2*a(2))^2 + (1/2)*(1*cbi(4) - (1/2)*(2*cbi(1)*cbi(3) + 1*cbi(2)^2) + (1/3)*3*cbi(1)^2*cbi(2)) = 27.
Recurrence II (rewritten): a(4)= (1/8)*((-2)^4 + 2*(-2*a(2))^2 + (1/2)*4^4) = 27.
		

Crossrefs

Cf. A147542 (Fibonacci), A157161 (Catalan).

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    S:= convert(series(-ln(1-4*x)/2,x,N+1),polynom):
    for n from 1 to N do
      a[n]:= coeff(S,x,n)/2;
      S:= S - add((-1)^(k-1)*(2*a[n])^k*x^(k*n)/k, k=1..N/n)
    od:
    seq(a[n],n=1..N); # Robert Israel, Jan 03 2019
  • PARI
    a(n) = if (n==1, 1, (1/(2*n))*((-2*a(1))^n + sumdiv(n, d, if ((d!=1) && (d!=n), d*(-2*a(d))^(n/d), 0)) + 4^n/2)); \\ after 2nd Recurrence II; Michel Marcus, Jul 06 2015

Formula

Recurrence I: With FP(n,m) the set of partitions of n with m distinct parts (which could be called fermionic partitions fp):
a(n) = binomial(2*n, n)/2 - Sum_{m=2..maxm(n)} 2^(m-1)*(Sum_{fp from FP(n,m)} (Product_{j=1..m} a(k[j]))), with maxm(n) = A003056(n) and the distinct parts k[j], j = 1..m, of the partition fp of n, n >= 3. Inputs a(1) = 1, a(2) = 3. See the array A008289(n,m) for the cardinality of the set FP(n,m).
Recurrence II: With P(n,m) the set of all partitions of n with m parts, and the multinomial numbers M0 (given for every partition under A048996):
a(n) = (1/2)*Sum_{d|n, 1= 2; a(1) = 1, with cbi(n) = binomial(2*n, n) = A000984(n). The exponents e(j) >= 0 satisfy Sum_{j=1..n} j*e(j) =n and Sum_{j=1..n} e(j) = m. The M0 numbers are m!/(Product_{j=1..n} (e(j))!).
Recurrence II (rewritten, due to email from V. Jovovic, Mar 10 2009):
a(n) = ((-2*a(1))^n + Sum_{d|n, 1

A353831 Product_{n>=1} (1 + a(n)*x^n) = Sum_{n>=0} Bell(n)*x^n, where Bell = A000110.

Original entry on oeis.org

1, 2, 3, 12, 34, 139, 610, 3046, 15604, 88460, 526274, 3344037, 22270254, 156359026, 1146627256, 8796070308, 70227355786, 583404596184, 5027823752930, 44907492540298, 414877525216196, 3960083715148092, 38996757506464858, 395754951565246801, 4134132167169618654, 44409616948511664062
Offset: 1

Author

Ilya Gutkovskiy, May 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, BellB[n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 26]

A378424 Product_{n>=1} (1+x^n)^a(n) = Sum_{k>=0} C(k)*x^k, where C(k) = A000108(k).

Original entry on oeis.org

1, 2, 3, 10, 25, 78, 245, 810, 2700, 9250, 32065, 112710, 400023, 1432858, 5170575, 18784170, 68635477, 252088416, 930138521, 3446167850, 12815663595, 47820447026, 178987624513, 671825132838, 2528212128750, 9536895064398, 36054433807398, 136583761444354, 518401146543811, 1971076361996550, 7506908923471953, 28634752211620266
Offset: 1

Author

Thomas Scheuerle, Nov 26 2024

Keywords

Comments

Conjecture: A327937(n) divides a(n).

Crossrefs

Programs

  • PARI
    A179277(n) = if(n<=1, 1, sum(k=0,floor(n/2),A179277(k)*binomial(2*n-4*k, n-2*k)/(n-2*k+1)))
    a(max_n) = {my(va,vb,vc); vc=va=vector(max_n);vb = vector(max_n,k,A179277(k)); for(k=1,max_n,vc[k]=k*vb[k]-sum(m=1,k-1,vc[m]*vb[k-m])); for(k=1,max_n,va[k]=1/k*sumdiv(k,m,moebius(k/m)*vc[m])); va;}

Formula

Inverse Euler transform of A179277.
Showing 1-3 of 3 results.