cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157207 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 33, 94, 33, 1, 1, 72, 442, 442, 72, 1, 1, 151, 1752, 3818, 1752, 151, 1, 1, 310, 6306, 25358, 25358, 6306, 310, 1, 1, 629, 21390, 144524, 268852, 144524, 21390, 629, 1, 1, 1268, 69822, 746744, 2312836, 2312836, 746744, 69822, 1268, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 25 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    5,     1;
  1,   14,    14,      1;
  1,   33,    94,     33,       1;
  1,   72,   442,    442,      72,       1;
  1,  151,  1752,   3818,    1752,     151,      1;
  1,  310,  6306,  25358,   25358,    6306,    310,     1;
  1,  629, 21390, 144524,  268852,  144524,  21390,   629,    1;
  1, 1268, 69822, 746744, 2312836, 2312836, 746744, 69822, 1268, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], k, n-k];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
  • Sage
    def f(n,k): return k if (k <= n//2) else n-k
    @CachedFunction
    def T(n,k,m):  # A157207
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A094002(n-1). - G. C. Greubel, Jan 10 2022

Extensions

Edited by G. C. Greubel, Jan 10 2022