cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157265 a(n) = 36*n^2 - 17*n + 2.

Original entry on oeis.org

21, 112, 275, 510, 817, 1196, 1647, 2170, 2765, 3432, 4171, 4982, 5865, 6820, 7847, 8946, 10117, 11360, 12675, 14062, 15521, 17052, 18655, 20330, 22077, 23896, 25787, 27750, 29785, 31892, 34071, 36322, 38645, 41040, 43507, 46046, 48657, 51340
Offset: 1

Views

Author

Vincenzo Librandi, Feb 26 2009

Keywords

Comments

The identity (10368*n^2-4896*n+577)^2-(36*n^2-17*n+2)* (1728*n-408)^2=1 can be written as A157267(n)^2-a(n)* A157266(n)^2=1 (see also the second comment in A157267). - Vincenzo Librandi, Jan 27 2012
The continued fraction expansion of sqrt(a(n)) is [6n-2; {1, 1, 2, 1, 1, 12n-4}]. - Magus K. Chu, Sep 09 2022

Crossrefs

Programs

  • Magma
    I:=[21, 112, 275]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 27 2012
  • Mathematica
    LinearRecurrence[{3,-3,1},{21,112,275},40] (* Vincenzo Librandi, Jan 27 2012 *)
  • PARI
    a(n)=36*n^2-17*n+2 \\ Charles R Greathouse IV, Jan 11 2012
    

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 27 2012
G.f.: x*(21 + 49*x + 2*x^2)/(1-x)^3. - Vincenzo Librandi, Jan 27 2012
E.g.f.: (36*x^2 + 19*x + 2)*exp(x) - 2. - G. C. Greubel, Feb 04 2018