A157265 a(n) = 36*n^2 - 17*n + 2.
21, 112, 275, 510, 817, 1196, 1647, 2170, 2765, 3432, 4171, 4982, 5865, 6820, 7847, 8946, 10117, 11360, 12675, 14062, 15521, 17052, 18655, 20330, 22077, 23896, 25787, 27750, 29785, 31892, 34071, 36322, 38645, 41040, 43507, 46046, 48657, 51340
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[21, 112, 275]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 27 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{21,112,275},40] (* Vincenzo Librandi, Jan 27 2012 *)
-
PARI
a(n)=36*n^2-17*n+2 \\ Charles R Greathouse IV, Jan 11 2012
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 27 2012
G.f.: x*(21 + 49*x + 2*x^2)/(1-x)^3. - Vincenzo Librandi, Jan 27 2012
E.g.f.: (36*x^2 + 19*x + 2)*exp(x) - 2. - G. C. Greubel, Feb 04 2018
Comments