A157267 a(n) = 10368*n^2 - 4896*n + 577.
6049, 32257, 79201, 146881, 235297, 344449, 474337, 624961, 796321, 988417, 1201249, 1434817, 1689121, 1964161, 2259937, 2576449, 2913697, 3271681, 3650401, 4049857, 4470049, 4910977, 5372641, 5855041, 6358177, 6882049, 7426657, 7992001, 8578081, 9184897, 9812449
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[6049, 32257, 79201]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 27 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{6049,32257,79201},40] (* Vincenzo Librandi, Jan 27 2012 *)
-
PARI
for(n=1, 40, print1(10368*n^2 - 4896*n + 577", ")); \\ Vincenzo Librandi, Jan 27 2012
Formula
From Vincenzo Librandi, Jan 27 2012: (Start)
G.f.: x*(6049 + 14110*x + 577*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(10368*x^2 + 5472*x + 577) - 577. - Elmo R. Oliveira, Nov 09 2024
Comments