cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157267 a(n) = 10368*n^2 - 4896*n + 577.

Original entry on oeis.org

6049, 32257, 79201, 146881, 235297, 344449, 474337, 624961, 796321, 988417, 1201249, 1434817, 1689121, 1964161, 2259937, 2576449, 2913697, 3271681, 3650401, 4049857, 4470049, 4910977, 5372641, 5855041, 6358177, 6882049, 7426657, 7992001, 8578081, 9184897, 9812449
Offset: 1

Views

Author

Vincenzo Librandi, Feb 26 2009

Keywords

Comments

The identity (10368*n^2 - 4896*n + 577)^2 - (36*n^2 - 17*n + 2)*(1728*n - 408)^2 = 1 can be written as a(n)^2 - A157265(n)*A157266(n)^2 = 1. - Vincenzo Librandi, Jan 27 2012
This is the case s = 4*n - 1 of the identity (2*r^2 - 1)^2 - ((r^2 - 1)/144)*(24*r)^2 = 1, where r = 18*s + 9*i^(s*(s+1)) - (-1)^s - 9 and i = sqrt(-1). - Bruno Berselli, Jan 29 2012

Crossrefs

Programs

  • Magma
    I:=[6049, 32257, 79201]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 27 2012
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{6049,32257,79201},40] (* Vincenzo Librandi, Jan 27 2012 *)
  • PARI
    for(n=1, 40, print1(10368*n^2 - 4896*n + 577", ")); \\ Vincenzo Librandi, Jan 27 2012

Formula

From Vincenzo Librandi, Jan 27 2012: (Start)
G.f.: x*(6049 + 14110*x + 577*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(10368*x^2 + 5472*x + 577) - 577. - Elmo R. Oliveira, Nov 09 2024