A157273 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2, read by rows.
1, 1, 1, 1, 12, 1, 1, 47, 47, 1, 1, 154, 590, 154, 1, 1, 477, 4498, 4498, 477, 1, 1, 1448, 28323, 71232, 28323, 1448, 1, 1, 4363, 162313, 816503, 816503, 162313, 4363, 1, 1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1, 1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 12, 1; 1, 47, 47, 1; 1, 154, 590, 154, 1; 1, 477, 4498, 4498, 477, 1; 1, 1448, 28323, 71232, 28323, 1448, 1; 1, 4363, 162313, 816503, 816503, 162313, 4363, 1; 1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1; 1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1]; T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]]; Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
Sage
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1 @CachedFunction def T(n,k,m): # A157207 if (k==0 or k==n): return 1 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m) flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
Formula
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2.
T(n, n-k, m) = T(n, k, m).
Extensions
Edited by G. C. Greubel, Feb 05 2022