A157275 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 1, read by rows.
1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5604, 2413, 182, 1, 1, 373, 8679, 38117, 38117, 8679, 373, 1, 1, 756, 29376, 219020, 426002, 219020, 29376, 756, 1, 1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 17, 17, 1; 1, 40, 126, 40, 1; 1, 87, 606, 606, 87, 1; 1, 182, 2413, 5604, 2413, 182, 1; 1, 373, 8679, 38117, 38117, 8679, 373, 1; 1, 756, 29376, 219020, 426002, 219020, 29376, 756, 1; 1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
f[n_,k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)]; T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]]; Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
Sage
def f(n,k): return 2*k if (k <= n//2) else 2*(n-k) @CachedFunction def T(n,k,m): # A157275 if (k==0 or k==n): return 1 else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m) flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
Formula
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 1.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A101945(n-1), for n >= 1. - G. C. Greubel, Feb 05 2022
Extensions
Edited by G. C. Greubel, Feb 05 2022